A053482 Binomial transform of A029767.
1, 4, 21, 142, 1201, 12336, 149989, 2113546, 33926337, 611660476, 12243073621, 269456124774, 6468249055921, 168191402251432, 4709596238204901, 141291441773619106, 4521383010795364609, 153727989225714801396, 5534225015581836134677
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
CoefficientList[Series[E^x/(1-3*x+2*x^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)
Formula
E.g.f.: exp(x)*(2/(1-2x)-1/(1-x))=exp(x)/(1-3x+2x^2); a(n)=sum{k=0..n, C(n,k)*k!*(2^(k+1)-1)}; a(n)=n!*sum{k=0..n, (2^(n-k+1)-1)/k!}; a(n)=int(x^n*(exp((1-x)/2)-exp(1-x)),x,1,infty); a(n)=2*A010844(n)-A000522(n); - Paul Barry, Jan 28 2008
Conjecture: a(n) -(3*n+1)*a(n-1) +(2*n+3)*(n-1)*a(n-2) -2*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Sep 29 2012
a(n) = 3*n*a(n-2)-2*n*(n-1)*a(n-2)+1, derived from the array defined in the comment, which proves the previous conjecture. - Richard Choulet, Dec 17 2012
a(n) ~ n! * 2^(n+1)*exp(1/2). - Vaclav Kotesovec, Oct 02 2013
Comments