A053488 E.g.f.: exp(exp(sinh(x))-1)-1.
0, 1, 2, 6, 23, 103, 535, 3153, 20676, 149148, 1172343, 9960085, 90864801, 885278605, 9167936406, 100508961982, 1162366436355, 14136151459043, 180287711599455, 2405321659729837, 33495442060505752, 485880832780748932, 7328433495203878939, 114737387813829452625
Offset: 0
Keywords
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.1.14.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..400
- Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011.
Programs
-
Mathematica
nn = 21; a = Sinh[x]; Range[0, nn]! CoefficientList[Series[Exp[Exp[a] - 1] - 1, {x, 0, nn}], x] (* Geoffrey Critzer, Dec 28 2011 *)
-
Maxima
a(n):=sum(sum(1/(2^k*k!)*sum((-1)^i*binomial(k,i)*(k-2*i)^n,i,0,k)*stirling2(k,m),k,m,n),m,1,n); /* Vladimir Kruchinin, Sep 10 2010 */
Formula
a(n) = Sum_{m=1..n} Sum_{k=m..n} (Stirling2(k,m)/(2^k*k!))*Sum_{i=0..k} (-1)^i*binomial(k,i)*(k-2*i)^n. - Vladimir Kruchinin, Sep 10 2010
Comments