A053494 Number of symmetric 5 X 5 matrices of nonnegative integers with every row and column adding to n.
1, 26, 348, 2698, 14751, 62781, 222190, 681460, 1865715, 4655535, 10756921, 23290026, 47700173, 93104473, 174248451, 314246511, 548380980, 929209095, 1533389605, 2470568045, 3894914166, 6019752376, 9136114923, 13635769173, 20039850376, 29033765566
Offset: 0
References
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Prop. 4.6.21, p. 235, G_5(lambda).
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
- R. P. Stanley, Magic labelings of graphs, symmetric magic squares,..., Duke Math. J. 43 (3) (1976) 511-531, F_5(x) in Section 5.
- Index entries for linear recurrences with constant coefficients, signature (5,-4,-20,40,16,-100,44,110,-110,-44,100,-16,-40,20,4,-5,1).
Programs
-
Mathematica
CoefficientList[Series[(1+21x+222x^2+1082x^3+3133x^4+5722x^5+7013x^6+5722x^7+3133x^8+1082x^9+222x^10+21x^11+x^12)/((1-x)^11(1+x)^6),{x,0,30}],x] (* or *) LinearRecurrence[ {5,-4,-20,40,16,-100,44,110,-110,-44,100,-16,-40,20,4,-5,1},{1,26,348,2698,14751,62781,222190,681460,1865715,4655535,10756921,23290026,47700173,93104473,174248451,314246511,548380980},30] (* Harvey P. Dale, Mar 05 2023 *)
-
PARI
Vec((1 + 21*x + 222*x^2 + 1082*x^3 + 3133*x^4 + 5722*x^5 + 7013*x^6 + 5722*x^7 + 3133*x^8 + 1082*x^9 + 222*x^10 + 21*x^11 + x^12) / ((1 - x)^11*(1 + x)^6) + O(x^30)) \\ Colin Barker, Jan 14 2017
Formula
G.f.: (1 + 21*x + 222*x^2 + 1082*x^3 + 3133*x^4 + 5722*x^5 + 7013*x^6 + 5722*x^7 + 3133*x^8 + 1082*x^9 + 222*x^10 + 21*x^11 + x^12) / ((1-x)^11*(1+x)^6).
a(n) = (189*(59981+5555*(-1)^n) + 18*(2345165+65331*(-1)^n)*n + (76615494+689850*(-1)^n)*n^2 + 40*(2138179+6237*(-1)^n)*n^3 + (63277966+47250*(-1)^n)*n^4 + 1260*(25421+3*(-1)^n)*n^5 + 11171664*n^6 + 2644080*n^7 + 405954*n^8 + 36500*n^9 + 1460*n^10) / 12386304. - Colin Barker, Jan 14 2017
Extensions
Revised definition, Jul 06 2014