cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A188403 T(n,k) = Number of (n*k) X k binary arrays with rows in nonincreasing order, n ones in every column and no more than 2 ones in any row.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 10, 11, 4, 1, 26, 56, 23, 5, 1, 76, 348, 214, 42, 6, 1, 232, 2578, 2698, 641, 69, 7, 1, 764, 22054, 44288, 14751, 1620, 106, 8, 1, 2620, 213798, 902962, 478711, 62781, 3616, 154, 9, 1, 9496, 2313638, 22262244, 20758650, 3710272, 222190, 7340, 215, 10, 1
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2011

Keywords

Comments

From Andrew Howroyd, Apr 09 2020: (Start)
T(n,k) is the number of k X k symmetric matrices with nonnegative integer entries and all row and column sums n. The number of such matrices up to isomorphism is given in A333737.
T(n,k) is also the number of loopless multigraphs with k labeled nodes of degree n or less. The number of such multigraphs up to isomorphism is given in A333893. (End)

Examples

			Table starts
  1  2   4    10      26        76         232          764          2620
  1  3  11    56     348      2578       22054       213798       2313638
  1  4  23   214    2698     44288      902962     22262244     648446612
  1  5  42   641   14751    478711    20758650   1158207312   80758709676
  1  6  69  1620   62781   3710272   313568636  36218801244 5518184697792
  1  7 106  3616  222190  22393101  3444274966 767013376954 ...
  1  8 154  7340  681460 111200600 29445929253 ...
  1  9 215 13825 1865715 472211360 ...
  1 10 290 24510 4655535 ...
  1 11 381 41336 ...
  ...
All solutions for 4 X 2:
..1..0....1..1....1..1
..1..0....1..1....1..0
..0..1....0..0....0..1
..0..1....0..0....0..0
		

Crossrefs

Columns 1..8 are A000012, A000027(n+1), A019298(n+1), A053493, A053494, A188400, A188401, A188402.
Main diagonal is A333739.

Programs

  • PARI
    T(k,n)={
      local(M=Map(Mat([0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r, h, p, q, v, e) = if(!p, acc(x^e+q, v), my(i=poldegree(p), t=pollead(p)); self()(r, k, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, (k-e)\m), self()(r, if(j==t, k, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e+j*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-r, k, src[i, 1], 0, src[i, 2], 0))); vecsum(Mat(M)[,2]);
    }
    {for(n=1, 7, for(k=1, 7, print1(T(n,k),", ")); print)} \\ Andrew Howroyd, Apr 08 2020

A053493 Number of symmetric 4 X 4 matrices of nonnegative integers with every row and column adding to n.

Original entry on oeis.org

1, 10, 56, 214, 641, 1620, 3616, 7340, 13825, 24510, 41336, 66850, 104321, 157864, 232576, 334680, 471681, 652530, 887800, 1189870, 1573121, 2054140, 2651936, 3388164, 4287361, 5377190, 6688696, 8256570, 10119425, 12320080, 14905856, 17928880, 21446401
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000; definition revised Jul 06 2014

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Prop. 4.6.21, p. 235, G_4(lambda).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+4x+10x^2+4x^3+x^4)/((1-x)^7(1+x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{6,-14,14,0,-14,14,-6,1},{1,10,56,214,641,1620,3616,7340},30] (* Harvey P. Dale, Oct 31 2011 *)
  • PARI
    Vec((1+4*x+10*x^2+4*x^3+x^4) / ((1-x)^7*(1+x)) + O(x^40)) \\ Colin Barker, Jan 14 2017

Formula

G.f.: (1+4*x+10*x^2+4*x^3+x^4)/((1-x)^7*(1+x)).
a(0)=1, a(1)=10, a(2)=56, a(3)=214, a(4)=641, a(5)=1620, a(6)=3616, a(7)=7340, a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8). - Harvey P. Dale, Oct 31 2011
a(n) = (9*(31+(-1)^n) + 768*n + 928*n^2 + 624*n^3 + 238*n^4 + 48*n^5 + 4*n^6) / 288. - Colin Barker, Jan 14 2017

A070212 Number of 5 X 5 pandiagonal magic squares with sum n.

Original entry on oeis.org

1, 10, 55, 220, 715, 2001, 4995, 11385, 24090, 47905, 90376, 162955, 282490, 473110, 768570, 1215126, 1875015, 2830620, 4189405, 6089710, 8707501, 12264175, 17035525, 23361975, 31660200, 42436251, 56300310, 73983205, 96354820, 124444540, 159463876, 202831420, 256200285, 321488190
Offset: 0

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 07 2002

Keywords

Comments

In contrast to other definitions, a magic square may contain here any nonnegative integers, not necessarily distinct. For example, the 10 solutions for n = 1 are the 10 permutation matrices of size 5 X 5 which are pandiagonal in the sense that any of the 10 (principal or broken) diagonals has exactly one 1 and four 0's. - M. F. Hasler, Oct 23 2018

Crossrefs

Programs

  • GAP
    a:=[1, 10, 55, 220, 715, 2001, 4995, 11385, 24090];;  for n in [10..36] do a[n]:=9*a[n-1]-36*a[n-2]+84*a[n-3]-126*a[n-4]+126*a[n-5]-84*a[n-6]+36*a[n-7]-9*a[n-8]+a[n-9]; od; a; # Muniru A Asiru, Oct 23 2018
  • Maple
    seq(coeff(series(-(x^4+x^3+x^2+x+1)/(x-1)^9,x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,10,55,220,715,2001,4995,11385,24090},40] (* Harvey P. Dale, Mar 13 2018 *)
  • PARI
    apply( A070212(n)=1/8064*(n+4)*(n+3)*(n+2)*(n+1)*(n^2+5*n+8)*(n^2+5*n+42), [0..20]) \\ Edited by M. F. Hasler, Oct 23 2018
    

Formula

a(n) = (1/8064) * (n+4)*(n+3)*(n+2)*(n+1)*(n^2+5n+8)*(n^2+5n+42).
G.f.: -(x^4+x^3+x^2+x+1) / (x-1)^9. [Colin Barker, Dec 10 2012]

Extensions

More terms from Benoit Cloitre, May 12 2002
More terms from M. F. Hasler, Oct 23 2018

A244868 Number of symmetric 5 X 5 matrices of nonnegative integers with zeros on the main diagonal and every row and column adding to n.

Original entry on oeis.org

1, 22, 158, 654, 1980, 4906, 10577, 20588, 37059, 62710, 100936, 155882, 232518, 336714, 475315, 656216, 888437, 1182198, 1548994, 2001670, 2554496, 3223242, 4025253, 4979524, 6106775, 7429526, 8972172, 10761058, 12824554, 15193130, 17899431, 20978352, 24467113, 28405334, 32835110, 37801086
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2014

Keywords

Crossrefs

Even bisection of row n=5 of A333351.
Cf. A053494.

Programs

  • PARI
    Vec((1 + 16*x + 41*x^2 + 16*x^3 + x^4) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 16*x + 41*x^2 + 16*x^3 + x^4) / (1 - x)^6.
From Colin Barker, Jan 11 2017: (Start)
a(n) = (24 + 94*n + 165*n^2 + 155*n^3 + 75*n^4 + 15*n^5) / 24.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
Showing 1-4 of 4 results.