A053496 Number of degree-n permutations of order dividing 6.
1, 1, 2, 6, 18, 66, 396, 2052, 12636, 91548, 625176, 4673736, 43575192, 377205336, 3624289488, 38829340656, 397695226896, 4338579616272, 54018173703456, 641634784488288, 8208962893594656, 113809776294348576, 1526808627197721792, 21533423236302943296
Offset: 0
Keywords
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 +x^3/3 +x^6/6) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019 -
Maple
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1, add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 6]))) end: seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
Mathematica
a[n_] := a[n] = If[n<0, 0, If[n == 0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 6}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *) With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^3/3 +x^6/6], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 14 2019 *)
-
PARI
my(x='x+O('x^30)); Vec(serlaplace( exp(x+x^2/2+x^3/3+x^6/6) )) \\ G. C. Greubel, May 14 2019
-
Sage
m = 30; T = taylor(exp(x +x^2/2 +x^3/3 +x^6/6), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019
Formula
E.g.f.: exp(x +x^2/2 +x^3/3 +x^6/6).
D-finite with recurrence a(n) -a(n-1) +(-n+1)*a(n-2) -(n-1)*(n-2)*a(n-3) -(n-5)*(n-1)*(n-2)*(n-3)*(n-4)*a(n-6)=0. - R. J. Mathar, Jul 04 2023