cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053498 Number of degree-n permutations of order dividing 8.

Original entry on oeis.org

1, 1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256, 39221579776, 607251736576, 7244686764032, 101611422797824, 1170362064019456, 19281174853615616, 261583327556386816, 4084459360167657472, 54366023748591386624
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^4/4 +x^8/8) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 4, 8])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    CoefficientList[Series[Exp[x+x^2/2+x^4/4+x^8/8], {x, 0, 23}], x]*Range[0, 23]! (* Jean-François Alcover, Mar 24 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^2/2 +x^4/4 +x^8/8) )) \\ G. C. Greubel, May 14 2019
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2 +x^4/4 +x^8/8), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^2/2 + x^4/4 + x^8/8).