A053500 Number of degree-n permutations of order dividing 10.
1, 1, 2, 4, 10, 50, 220, 1240, 6140, 32860, 602200, 5668400, 62030200, 522328600, 4487190800, 62591332000, 715163146000, 9573774122000, 105731659828000, 1187355279592000, 29205778751300000, 481597207656340000, 9086318388933400000, 132525988426667120000
Offset: 0
Keywords
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^5/5 + x^10/10) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019 -
Maple
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1, add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 5, 10]))) end: seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
Mathematica
a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}] *a[n-j], {j, {1, 2, 5, 10}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 24 2014, after Alois P. Heinz *) With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^5/5 +x^10/10], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
-
PARI
my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^5/5 + x^10/10) )) \\ G. C. Greubel, May 15 2019
-
Sage
m = 30; T = taylor(exp(x + x^2/2 + x^5/5 + x^10/10), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
Formula
E.g.f.: exp(x + x^2/2 + x^5/5 + x^10/10).