cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053510 Decimal expansion of log(Pi).

Original entry on oeis.org

1, 1, 4, 4, 7, 2, 9, 8, 8, 5, 8, 4, 9, 4, 0, 0, 1, 7, 4, 1, 4, 3, 4, 2, 7, 3, 5, 1, 3, 5, 3, 0, 5, 8, 7, 1, 1, 6, 4, 7, 2, 9, 4, 8, 1, 2, 9, 1, 5, 3, 1, 1, 5, 7, 1, 5, 1, 3, 6, 2, 3, 0, 7, 1, 4, 7, 2, 1, 3, 7, 7, 6, 9, 8, 8, 4, 8, 2, 6, 0, 7, 9, 7, 8, 3, 6, 2, 3, 2, 7, 0, 2, 7, 5, 4, 8, 9, 7, 0, 7, 7, 0, 2, 0, 0, 9
Offset: 1

Views

Author

Hsu, Po-Wei (Benny) (arsene_lupin(AT)intekom.co.za), Jan 14 2000

Keywords

Comments

Also the least positive x such that sin(exp(x))==0.
Also real part of log(log(-1)). - Stanislav Sykora, May 11 2015
Cheng, Dietel, Herblot, Huang, Krieger, Marques, Mason, Mereb, & Wilson show, expanding a remark by S. Lang, that Schanuel's conjecture implies that this constant and Pi are algebraically independent over a set E which includes the algebraic numbers and (in a technical sense) allows any finite number of exponentiations, see the paper for details and a still more general result. - Charles R Greathouse IV, Dec 15 2019

Examples

			1.1447298858494001741...
		

References

  • Wolfram Research, 1991 Mathematica Conference, Elementary Tutorial Notes, Section 1, Introduction to Mathematica, Paul Abbott, page 25.

Crossrefs

Programs

Formula

Equals log(log(-1)) - (Pi/2)*I. - Stanislav Sykora, May 11 2015
Equals 1 + Sum_{n>=1} zeta(2*n)/(n*(2*n+1)*2^(2*n)), where zeta is the Riemann zeta function. - Vaclav Kotesovec, Mar 04 2016
Equals 3/2 - Sum_{k>=1} (zeta(2*k)-1)/(k+1). - Vaclav Kotesovec, Jun 19 2021

Extensions

More terms from James Sellers, Jan 20 2000