A053510 Decimal expansion of log(Pi).
1, 1, 4, 4, 7, 2, 9, 8, 8, 5, 8, 4, 9, 4, 0, 0, 1, 7, 4, 1, 4, 3, 4, 2, 7, 3, 5, 1, 3, 5, 3, 0, 5, 8, 7, 1, 1, 6, 4, 7, 2, 9, 4, 8, 1, 2, 9, 1, 5, 3, 1, 1, 5, 7, 1, 5, 1, 3, 6, 2, 3, 0, 7, 1, 4, 7, 2, 1, 3, 7, 7, 6, 9, 8, 8, 4, 8, 2, 6, 0, 7, 9, 7, 8, 3, 6, 2, 3, 2, 7, 0, 2, 7, 5, 4, 8, 9, 7, 0, 7, 7, 0, 2, 0, 0, 9
Offset: 1
Examples
1.1447298858494001741...
References
- Wolfram Research, 1991 Mathematica Conference, Elementary Tutorial Notes, Section 1, Introduction to Mathematica, Paul Abbott, page 25.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Chuangxun Cheng, Brian Dietel, Mathilde Herblot, Jingjing Huang, Holly Krieger, Diego Marques, Jonathan Mason, Martin Mereb, S. Robert Wilson, Some consequences of Schanuel's conjecture, Journal of Number Theory 129:6 (2009), pp. 1464-1467.
- Michael Penn, Frullani Integral, YouTube video, 2021.
Programs
-
Magma
R:= RealField(100); Log(Pi(R)); // G. C. Greubel, May 15 2019
-
Mathematica
RealDigits[Log[Pi], 10, 111][[1]]
-
PARI
log(Pi) \\ Charles R Greathouse IV, Jan 04 2016
-
SageMath
numerical_approx(log(pi), digits=100) # G. C. Greubel, May 15 2019
Formula
Equals log(log(-1)) - (Pi/2)*I. - Stanislav Sykora, May 11 2015
Equals 1 + Sum_{n>=1} zeta(2*n)/(n*(2*n+1)*2^(2*n)), where zeta is the Riemann zeta function. - Vaclav Kotesovec, Mar 04 2016
Equals 3/2 - Sum_{k>=1} (zeta(2*k)-1)/(k+1). - Vaclav Kotesovec, Jun 19 2021
Extensions
More terms from James Sellers, Jan 20 2000
Comments