A053519 Denominators of successive convergents to continued fraction 1+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/(9+9/10+...))))))).
1, 3, 15, 29, 597, 4701, 4643, 413691, 4512993, 17926611, 695000919, 9680369943, 4380611853, 2303928046437, 39031251610227, 25940523189513, 1206420504316107, 20365306128628437, 1849040492948486661
Offset: 0
Examples
Convergents (to the first continued fraction) are 1, 5/3, 23/15, 45/29, 925/597, 7285/4701, ...
References
- L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
- E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.
Links
- Leonhardo Eulero, Introductio in analysin infinitorum. Tomus primus, Lausanne, 1748.
- L. Euler, Introduction à l'analyse infinitésimale, Tome premier, Tome second, trad. du latin en français par J. B. Labey, Paris, 1796-1797.
- M. A. Stern, Theorie der Kettenbrüche und ihre Anwendung, Crelle, 1832, pp. 1-22.
Programs
-
Maple
for j from 1 to 50 do printf(`%d,`,denom(cfrac([1,seq([i,i+1],i=2..j)]))); od:
-
Mathematica
num[0]=1; num[1]=5; num[n_] := num[n] = (n+2)*num[n-1] + (n+1)*num[n-2]; den[0]=1; den[1]=3; den[n_] := den[n] = (n+2)*den[n-1] + (n+1)*den[n-2]; a[n_] := Denominator[num[n]/den[n]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 16 2013 *)
Extensions
More terms from James Sellers, Feb 02 2000
Comments