A053526 Number of bipartite graphs with 3 edges on nodes {1..n}.
0, 0, 0, 0, 16, 110, 435, 1295, 3220, 7056, 14070, 26070, 45540, 75790, 121121, 187005, 280280, 409360, 584460, 817836, 1124040, 1520190, 2026255, 2665355, 3464076, 4452800, 5666050, 7142850, 8927100, 11067966, 13620285
Offset: 0
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Chai Wah Wu, Graphs whose normalized Laplacian matrices are separable as density matrices in quantum mechanics, arXiv:1407.5663 [quant-ph], 2014.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
GAP
List([0..40], n-> Binomial(n,4)*(n^2+3*n+4)/2) # G. C. Greubel, May 15 2019
-
Magma
[Binomial(n,4)*(n^2+3*n+4)/2: n in [0..40]]; // G. C. Greubel, May 15 2019
-
Mathematica
Table[Binomial[n,4]*(n^2+3*n+4)/2, {n,0,40}] (* G. C. Greubel, May 15 2019 *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,16,110,435},40] (* Harvey P. Dale, Nov 24 2022 *)
-
PARI
{a(n) = binomial(n,4)*(n^2+3*n+4)/2}; \\ G. C. Greubel, May 15 2019
-
Sage
[binomial(n,4)*(n^2+3*n+4)/2 for n in (0..40)] # G. C. Greubel, May 15 2019
Formula
a(n) = (n-3)*(n-2)*(n-1)*n*(n^2 + 3*n + 4)/48.
G.f.: x^4*(16-2*x+x^2)/(1-x)^7. - Colin Barker, May 08 2012
E.g.f.: x^4*(32 + 12*x + x^2)*exp(x)/48. - G. C. Greubel, May 15 2019