cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053526 Number of bipartite graphs with 3 edges on nodes {1..n}.

Original entry on oeis.org

0, 0, 0, 0, 16, 110, 435, 1295, 3220, 7056, 14070, 26070, 45540, 75790, 121121, 187005, 280280, 409360, 584460, 817836, 1124040, 1520190, 2026255, 2665355, 3464076, 4452800, 5666050, 7142850, 8927100, 11067966, 13620285
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.

Crossrefs

Column k=3 of A117279.
Cf. A000217 (1 edge), A050534 (2 edges).

Programs

  • GAP
    List([0..40], n-> Binomial(n,4)*(n^2+3*n+4)/2) # G. C. Greubel, May 15 2019
  • Magma
    [Binomial(n,4)*(n^2+3*n+4)/2: n in [0..40]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    Table[Binomial[n,4]*(n^2+3*n+4)/2, {n,0,40}] (* G. C. Greubel, May 15 2019 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,16,110,435},40] (* Harvey P. Dale, Nov 24 2022 *)
  • PARI
    {a(n) = binomial(n,4)*(n^2+3*n+4)/2}; \\ G. C. Greubel, May 15 2019
    
  • Sage
    [binomial(n,4)*(n^2+3*n+4)/2 for n in (0..40)] # G. C. Greubel, May 15 2019
    

Formula

a(n) = (n-3)*(n-2)*(n-1)*n*(n^2 + 3*n + 4)/48.
G.f.: x^4*(16-2*x+x^2)/(1-x)^7. - Colin Barker, May 08 2012
E.g.f.: x^4*(32 + 12*x + x^2)*exp(x)/48. - G. C. Greubel, May 15 2019