A053538 Triangle: a(n,m) = ways to place p balls in n slots with m in the rightmost p slots, 0<=p<=n, 0<=m<=n, summed over p, a(n,m)= Sum_{k=0..n} binomial(k,m)*binomial(n-k,k-m), (see program line).
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 4, 1, 1, 8, 10, 7, 5, 1, 1, 13, 18, 16, 9, 6, 1, 1, 21, 33, 31, 23, 11, 7, 1, 1, 34, 59, 62, 47, 31, 13, 8, 1, 1, 55, 105, 119, 101, 66, 40, 15, 9, 1, 1, 89, 185, 227, 205, 151, 88, 50, 17, 10, 1, 1, 144, 324, 426, 414, 321, 213, 113, 61, 19, 11, 1, 1
Offset: 0
Examples
n=4; Table[binomial[k, j]binomial[n-k, k-j], {k, 0, n}, {j, 0, n}] splits {1, 4, 6, 4, 1} into {{1, 0, 0, 0, 0}, {3, 1, 0, 0, 0}, {1, 4, 1, 0, 0}, {0, 0, 3, 1, 0}, {0, 0, 0, 0, 1}} and this gives summed by columns {5, 5, 4, 1, 1} Triangle begins : 1; 1, 1; 2, 1, 1; 3, 3, 1, 1; 5, 5, 4, 1, 1; 8, 10, 7, 5, 1, 1; 13, 18, 16, 9, 6, 1, 1; ... (0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, ...) begins : 1; 0, 1; 0, 1, 1; 0, 2, 1, 1; 0, 3, 3, 1, 1; 0, 5, 5, 4, 1, 1; 0, 8, 10, 7, 5, 1, 1; 0, 13, 18, 16, 9, 6, 1, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- R. P. Grimaldi, Extraordinary subsets: a generalization, Fib. Quart., 55 (No. 3, 2017), 114-122. See Table 1.
Crossrefs
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Sum([0..n], j-> Binomial(j,k)*Binomial(n-j,j-k)) ))); # G. C. Greubel, May 16 2019
-
Magma
[[(&+[Binomial(j,k)*Binomial(n-j,j-k): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 16 2019
-
Maple
a:= (n, m)-> add(binomial(k, m)*binomial(n-k, k-m), k=0..n): seq(seq(a(n,m), m=0..n), n=0..12); # Alois P. Heinz, Sep 19 2013
-
Mathematica
Table[Sum[Binomial[k, m]*Binomial[n-k, k-m], {k,0,n}], {n,0,12}, {m,0,n}]
-
PARI
{T(n,k) = sum(j=0,n, binomial(j,k)*binomial(n-j,j-k))}; \\ G. C. Greubel, May 16 2019
-
Sage
[[sum(binomial(j,k)*binomial(n-j,j-k) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 16 2019
Formula
From Philippe Deléham, Mar 05 2012: (Start)
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n.
G.f.: 1/(1-(1+y)*x-(1-y)*x^2).
Comments