A053570 Sum of totient functions over arguments running through reduced residue system of n.
1, 1, 2, 3, 6, 5, 12, 13, 18, 15, 32, 21, 46, 35, 42, 49, 80, 49, 102, 71, 88, 85, 150, 89, 156, 125, 164, 137, 242, 113, 278, 213, 230, 217, 272, 191, 396, 275, 320, 261, 490, 237, 542, 369, 386, 401, 650, 355, 640, 431, 560, 507, 830, 449, 704, 551, 696, 643
Offset: 1
Keywords
Examples
Given n = 36, its reduced residue system is {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35}; the Euler phi of these terms are {1, 4, 6, 10, 12, 16, 18, 22, 20, 28, 30, 24}. Summation over this last set gives 191. So a(36) = 191.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A143620. - Gary W. Adamson, Aug 27 2008
Programs
-
Maple
A038566_row := proc(n) a := {} ; for m from 1 to n do if igcd(n,m) =1 then a := a union {m} ; end if; end do: a ; end proc: A053570 := proc(n) add(numtheory[phi](r),r=A038566_row(n)) ; end proc: seq(A053570(n),n=1..30) ; # R. J. Mathar, Jan 09 2017
-
Mathematica
Join[{1}, Table[Sum[EulerPhi[i] * KroneckerDelta[GCD[i, n], 1], {i, n - 1}], {n, 2, 60}]] (* Alonso del Arte, Nov 02 2014 *)
Comments