cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A127373 Triangle, row sums = A023896, left column = A053570.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 0, 1, 0, 6, 2, 1, 1, 0, 5, 0, 0, 0, 1, 0, 12, 4, 2, 1, 1, 1, 0, 13, 0, 1, 0, 1, 0, 1, 0, 18, 4, 0, 2, 1, 0, 1, 1, 0, 15, 0, 3, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 12 2007

Keywords

Comments

Row sums = A023896: (1, 1, 3, 4, 10, 6, ...); left column = A053570: (1, 2, 3, 6, 5, 12, ...).

Examples

			First few rows of the triangle:
   1;
   1, 0;
   2, 1, 0;
   3, 0, 1, 0;
   6, 2, 1, 1, 0;
   5, 0, 0, 0, 1, 0
  12, 4, 2, 1, 1, 1, 0;
  ...
		

Crossrefs

Formula

A054521 * A054523 as infinite lower triangular matrices.

A055653 Sum of phi(d) [A000010] over all unitary divisors d of n (that is, gcd(d,n/d) = 1).

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 9, 13, 14, 15, 9, 17, 14, 19, 15, 21, 22, 23, 15, 21, 26, 19, 21, 29, 30, 31, 17, 33, 34, 35, 21, 37, 38, 39, 25, 41, 42, 43, 33, 35, 46, 47, 27, 43, 42, 51, 39, 53, 38, 55, 35, 57, 58, 59, 45, 61, 62, 49, 33, 65, 66, 67, 51, 69, 70, 71, 35, 73
Offset: 1

Views

Author

Labos Elemer, Jun 07 2000

Keywords

Comments

Phi-summation over d-s if runs over all divisors is n, so these values do not exceed n. Compare also other "Phi-summations" like A053570, A053571, or distinct primes dividing n, etc.
a(n) is also the number of solutions of x^(k+1)=x mod n for some k>=1. - Steven Finch, Apr 11 2006
An integer a is called regular (mod n) if there is an integer x such that a^2 x == a (mod n). Then a(n) is also the number of regular integers a (mod n) such that 1 <= a <= n. - Laszlo Toth, Sep 04 2008
Equals row sums of triangle A157361 and inverse Mobius transform of A114810. - Gary W. Adamson, Feb 28 2009
a(m) = m iff m is squarefree, a(A005117(n)) = A005117(n). - Reinhard Zumkeller, Mar 11 2012
Apostol & Tóth call this ϱ(n), i.e., varrho(n). - Charles R Greathouse IV, Apr 23 2013

Examples

			n=1260 has 36 divisors of which 16 are unitary ones: {1,4,5,7,9,20,28,35,36,45,63,140,180,252,315,1260}.
EulerPhi values of these divisors are: {1,2,4,6,6,8,12,24,12,24,36,48,48,72,144,288}.
The sum is 735, thus a(1260)=735.
Or, 1260=2^2*3^2*5*7, thus a(1260) = (1 + 2^2 - 2)*(1 + 3^2 - 3)*(1 + 5 - 5^0)*(1 + 7 - 7^0) = 735.
		

References

  • J. Morgado, Inteiros regulares módulo n, Gazeta de Matematica (Lisboa), 33 (1972), no. 125-128, 1-5. [From Laszlo Toth, Sep 04 2008]
  • J. Morgado, A property of the Euler phi-function concerning the integers which are regular modulo n, Portugal. Math., 33 (1974), 185-191.

Crossrefs

Programs

  • Haskell
    a055653 = sum . map a000010 . a077610_row
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Maple
    A055653 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ] [ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]-ifactors(n)[ 2 ][ i ] [ 1 ]^(ifactors(n)[ 2 ] [ i ] [ 2 ]-1)): od: RETURN(ans) end:
  • Mathematica
    a[n_] := Total[EulerPhi[Select[Divisors[n], GCD[#, n/#] == 1 &]]]; Array[a, 73] (* Jean-François Alcover, May 03 2011 *)
    f[p_, e_] := p^e - p^(e-1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ Charles R Greathouse IV, Feb 19 2013, corrected by Antti Karttunen, Sep 03 2018
    
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],f[i,1]^f[i,2]-f[i,1]^(f[i,2]-1)+1) \\ Charles R Greathouse IV, Feb 19 2013

Formula

If n = product p_i^e_i, a(n) = product (1+p_i^e_i-p_i^(e_i-1)). - Vladeta Jovovic, Apr 19 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)*product_{primes p} (1+p^(-2s)-p^(1-2s)-p^(-s)). - R. J. Mathar, Oct 24 2011
Dirichlet convolution square of A318661(n)/A318662(n). - Antti Karttunen, Sep 03 2018
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 = 0.535896... - Vaclav Kotesovec, Dec 17 2019

A055631 Sum of Euler's totient function phi of distinct primes dividing n.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 6, 1, 2, 5, 10, 3, 12, 7, 6, 1, 16, 3, 18, 5, 8, 11, 22, 3, 4, 13, 2, 7, 28, 7, 30, 1, 12, 17, 10, 3, 36, 19, 14, 5, 40, 9, 42, 11, 6, 23, 46, 3, 6, 5, 18, 13, 52, 3, 14, 7, 20, 29, 58, 7, 60, 31, 8, 1, 16, 13, 66, 17, 24, 11, 70, 3, 72, 37, 6, 19, 16, 15, 78, 5, 2
Offset: 1

Views

Author

Labos Elemer, Jun 06 2000

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); a := n -> add(f, f = map(phi, factorset(n)));
    seq(a(n), n = 1..81);  # Peter Luschny, Mar 30 2014
  • Mathematica
    Join[{0},Table[Total[EulerPhi[Transpose[FactorInteger[n]][[1]]]],{n,2,90}]] (* Harvey P. Dale, Oct 29 2012 *)
  • PARI
    A055631(n)=sum(i=1,#n=factor(n)~,n[1,i]-1) \\ M. F. Hasler, Nov 10 2016

Formula

a(n) = Sum_{p divides n} p-1 = A008472(n) - A001221(n).
If n = p^w, a power of prime, then a(n) = p-1; if n = 2p, then a(n) = p = n/2.
Additive with a(p^e) = p-1: a(10) = a(2*5) = a(2)+a(5) = (2-1)+(5-1) = 5; a(28) = a(2^2*7) = a(2^2)+a(7) = 1+6 = 7. - Vladeta Jovovic, Oct 23 2001
G.f.: Sum_{k>=1} (prime(k) - 1) * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Aug 18 2021

Extensions

Edited by M. F. Hasler, Nov 10 2016

A055654 Difference between n and the result of "Phi-summation" over unitary divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 0, 3, 0, 0, 0, 7, 0, 4, 0, 5, 0, 0, 0, 9, 4, 0, 8, 7, 0, 0, 0, 15, 0, 0, 0, 15, 0, 0, 0, 15, 0, 0, 0, 11, 10, 0, 0, 21, 6, 8, 0, 13, 0, 16, 0, 21, 0, 0, 0, 15, 0, 0, 14, 31, 0, 0, 0, 17, 0, 0, 0, 37, 0, 0, 12, 19, 0, 0, 0, 35, 26, 0, 0, 21, 0, 0, 0, 33, 0, 20, 0, 23
Offset: 1

Views

Author

Labos Elemer, Jun 07 2000

Keywords

Comments

Squarefree numbers are roots of a(n)=0 equation, while Min n for which a(n)=k is k^2. See also A000188, A008833.

Crossrefs

Programs

  • Haskell
    a055654 n = a055654_list !! (n-1)
    a055654_list = zipWith (-) [1..] a055653_list
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Mathematica
    Table[n - DivisorSum[n, EulerPhi[#] &, CoprimeQ[#, n/#] &], {n, 92}] (* Michael De Vlieger, Oct 26 2017 *)
    f[p_, e_] := p^e - p^(e-1) + 1; a[1] = 0; a[n_] := n - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 04 2024 *)
  • PARI
    a(n) = n - sumdiv(n, d, if (gcd(d, n/d)==1, eulerphi(d))); \\ Michel Marcus, Oct 27 2017
    
  • PARI
    a(n) = {my(f = factor(n)); n - prod(k = 1, #f~, f[k,1]^f[k,2] - f[k,1]^(f[k,2] - 1) + 1);} \\ Amiram Eldar, Oct 04 2024

Formula

a(n) = n - Sum_{u|n, gcd(u,n/u) = 1} phi(u), i.e. when u is a unitary divisor of n.
a(n) = n - A055653(n). - Sean A. Irvine, Mar 30 2022
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 - A065465 = 0.11848616... . - Amiram Eldar, Oct 04 2024

A249396 Composite numbers whose Euler totient divides the sum of the Euler totients of the numbers less than n that are relatively prime to n.

Original entry on oeis.org

9, 75, 135, 265, 1383, 6585, 17251, 165615, 503111, 856195
Offset: 1

Views

Author

Paolo P. Lava, Oct 27 2014

Keywords

Comments

No more terms < 10^6.

Examples

			Numbers coprime to 9 are 1, 2, 4, 5, 7, 8 and phi(9) = 6. Then, phi(1) + phi(2) + phi(4) + phi(5) + phi(7) + phi(8) = 1 + 1 + 2 + 4 + 6 + 4 = 18 and 18/6 = 3.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n; for n from 2 to q do
    if not isprime(n) then a:=0;
    for k from 1 to n do if gcd(k,n)=1 then a:=a+phi(k); fi; od;
    if type(a/phi(n),integer) then print(n); fi; fi; od; end: P(10^9);
  • PARI
    isok(n) = (n!=1) && !isprime(n) && (sum(k=1, n-1, if (gcd(k, n) == 1, eulerphi(k), 0)) % eulerphi(n) == 0); \\ Michel Marcus, Oct 29 2014

Extensions

a(8) from Ray Chandler, Nov 07 2014
a(9)-a(10) from Ray Chandler, Nov 11 2014

A143620 Triangle read by rows, square of A054521, 1<=k<=n.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 4, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 6, 2, 2, 1, 1, 0, 0, 4, 3, 2, 2, 1, 1, 0, 0, 6, 2, 4, 2, 2, 1, 1, 0, 0, 4, 3, 1, 2, 2, 1, 1, 1, 0, 0, 10, 4, 5, 3, 4, 1, 3, 1, 1, 0, 0, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Aug 27 2008

Keywords

Comments

Left border = phi(n), A000010.
Row sums = A053570: (1, 1, 2, 3, 6, 5, 12, 13,...).

Examples

			First few rows of the triangle =
1;
1, 0;
2, 0, 0;
2, 1, 0, 0;
4, 1, 1, 0, 0;
2, 1, 1, 1, 0, 0;
6, 2, 2, 1, 1, 0, 0;
4, 3, 2, 2, 1, 1, 0, 0;
6, 2, 4, 2, 2, 1, 1, 0, 0;
...
		

Crossrefs

Formula

Triangle read by rows, square of A054521, 1<=k<=n

A332686 a(n) = Sum_{k=1..n} phi(k/gcd(n, k)).

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 13, 18, 21, 23, 33, 33, 47, 49, 51, 67, 81, 76, 103, 97, 103, 119, 151, 135, 163, 173, 185, 189, 243, 185, 279, 280, 265, 299, 291, 291, 397, 379, 369, 371, 491, 381, 543, 491, 455, 553, 651, 539, 653, 610, 643, 683, 831, 689, 743, 753, 801, 887, 1029
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2020

Keywords

Comments

Inverse Moebius transform of A053570.

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[k/GCD[n, k]], {k, 1, n}], {n, 1, 59}]
  • PARI
    a(n) = sum(k=1, n, eulerphi(k/gcd(n, k))); \\ Michel Marcus, Feb 21 2020

Formula

a(n) = Sum_{k=1..n} phi(lcm(n, k)/n).
a(n) = Sum_{d|n} A053570(d).

A127506 Triangle read by rows: T(n,k) = A054521(n,k)*A000010(k), 1<=k<=n .

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 2, 2, 0, 1, 0, 0, 0, 4, 0, 1, 1, 2, 2, 4, 2, 0, 1, 0, 2, 0, 4, 0, 6, 0, 1, 1, 0, 2, 4, 0, 6, 4, 0, 1, 0, 2, 0, 0, 0, 6, 0, 6, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 17 2007

Keywords

Comments

Row sums = A053570.

Examples

			First few rows of the triangle are:
1;
1, 0;
1, 1, 0;
1, 0, 2, 0;
1, 1, 2, 2, 0;
1, 0, 0, 0, 4, 0;
1, 1, 2, 2, 4, 2, 0;
...
		

Crossrefs

Formula

A054521 * M, as infinite lower triangular matrices; M = phi(n) in the main diagonal and the rest zeros.

Extensions

Edited by R. J. Mathar, Jan 09 2008
Showing 1-8 of 8 results.