A053577 Cototient function n - phi(n) is a power of 2.
2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 16, 17, 19, 23, 24, 28, 29, 31, 32, 37, 41, 43, 47, 48, 53, 56, 59, 61, 62, 64, 67, 71, 73, 79, 83, 89, 96, 97, 101, 103, 107, 109, 112, 113, 124, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 192, 193, 197
Offset: 1
Keywords
Examples
For p prime, cototient(p)=1; for x in the set {49152,57344,63488,65024,65528,65536}, x-phi(x) = 2^15 = 32768.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local x; x:= n - numtheory:-phi(n); x = 2^padic:-ordp(x,2) end proc: select(filter, [$1..300]); # Robert Israel, Jan 29 2018
-
Mathematica
Select[Range[200],IntegerQ[Log[2,#-EulerPhi[#]]]&] (* Harvey P. Dale, Dec 14 2011 *)
-
PARI
select(x->hammingweight(x-eulerphi(x))==1,[1..200]) \\ M. F. Hasler, Nov 10 2016
Formula
A051953(n) = 2^w.
Extensions
Edited by M. F. Hasler, Nov 10 2016
Comments