cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053615 Pyramidal sequence: distance to nearest product of two consecutive integers (promic or heteromecic numbers).

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7
Offset: 0

Views

Author

Henry Bottomley, Mar 20 2000

Keywords

Comments

a(A002378(n)) = 0; a(n^2) = n.
Table A049581 T(n,k) = |n-k| read by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). - Boris Putievskiy, Jan 29 2013

Examples

			a(10) = |10 - 3*4| = 2.
From _Boris Putievskiy_, Jan 29 2013: (Start)
The start of the sequence as table:
  0, 1, 2, 3, 4, 5, 6, 7, ...
  1, 0, 1, 2, 3, 4, 5, 6, ...
  2, 1, 0, 1, 2, 3, 4, 5, ...
  3, 2, 1, 0, 1, 2, 3, 4, ...
  4, 3, 2, 1, 0, 1, 2, 3, ...
  5, 4, 3, 2, 1, 0, 1, 2, ...
  6, 5, 4, 3, 2, 1, 0, 1, ...
  ...
The start of the sequence as triangle array read by rows:
  0;
  1, 0, 1;
  2, 1, 0, 1, 2;
  3, 2, 1, 0, 1, 2, 3;
  4, 3, 2, 1, 0, 1, 2, 3, 4;
  5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5;
  6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6;
  7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7;
  ...
Row number r contains 2*r-1 numbers: r-1, r-2, ..., 0, 1, 2, ..., r-1. (End)
		

Crossrefs

Programs

  • Maple
    A053615 := proc(n)
        A004738(n+1)-1 ; # reuses code of A004738
    end proc:
    seq(A053615(n),n=0..30) ; # R. J. Mathar, Feb 14 2019
  • Mathematica
    a[0] = 0; a[n_] := Floor[Sqrt[n]] - a[n - Floor[Sqrt[n]]]; Table[a[n], {n, 0, 103}] (* Jean-François Alcover, Dec 16 2011, after Benoit Cloitre *)
    Join[{0},Module[{nn=150,ptci},ptci=Times@@@Partition[Range[nn/2+1],2,1];Table[Abs[n-Nearest[ptci,n]],{n,nn}][[All,1]]]] (* Harvey P. Dale, Aug 29 2020 *)
  • PARI
    a(n)=sqrtint(n)-a(n-sqrtint(n))
    
  • PARI
    apply( {A053615(n)=(t=sqrt(n)\/1)-abs(t^2-n)}, [0..99]) \\ M. F. Hasler, Feb 01 2025
    
  • Python
    A053615 = lambda n: (t := round(n**.5)) - abs(t**2 - n) # M. F. Hasler, Feb 01 2025
    
  • Python
    from math import isqrt
    def A053615(n): return abs((t:=isqrt(n))*(t+1)-n) # Chai Wah Wu, Mar 01 2025

Formula

a(n) = A004738(n+1) - 1.
Let u(1)=1, u(n) = n - u(n-sqrtint(n)) (cf. A037458); then a(0)=0 and for n > 0 a(n) = 2*u(n) - n. - Benoit Cloitre, Dec 22 2002
a(0)=0 then a(n) = floor(sqrt(n)) - a(n - floor(sqrt(n))). - Benoit Cloitre, May 03 2004
a(n) = |A196199(n)|. a(n) = |n - t^2 - t|, where t = floor(sqrt(n)). - Boris Putievskiy, Jan 29 2013 [corrected by Ridouane Oudra, May 11 2019]
a(n) = A000194(n) - A053188(n) = t - |t^2 - n|, where t = floor(sqrt(n)+1/2). - Ridouane Oudra, May 11 2019