A053645 Distance to largest power of 2 less than or equal to n; write n in binary, change the first digit to zero, and convert back to decimal.
0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
Offset: 1
Examples
From _Omar E. Pol_, Oct 17 2013: (Start) Written as an irregular triangle the sequence begins: 0; 0,1; 0,1,2,3; 0,1,2,3,4,5,6,7; 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15; ... (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, preprint, Theoretical Computer Sci., 98 (1992), 163-197.
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197 (see Ex. 24).
- Index entries for sequences related to binary expansion of n
Crossrefs
Programs
-
Haskell
a053645 1 = 0 a053645 n = 2 * a053645 n' + b where (n', b) = divMod n 2 -- Reinhard Zumkeller, Aug 28 2014 a053645_list = concatMap (0 `enumFromTo`) a000225_list -- Reinhard Zumkeller, Feb 04 2013, Mar 23 2012
-
Magma
[n - 2^Ilog2(n): n in [1..70]]; // Vincenzo Librandi, Jul 18 2019
-
Maple
seq(n - 2^ilog2(n), n=1..1000); # Robert Israel, Dec 23 2015
-
Mathematica
Table[n - 2^Floor[Log2[n]], {n, 100}] (* IWABUCHI Yu(u)ki, May 25 2017 *) Table[FromDigits[Rest[IntegerDigits[n, 2]], 2], {n, 100}] (* IWABUCHI Yu(u)ki, May 25 2017 *)
-
PARI
a(n)=n-2^(#binary(n)-1) \\ Charles R Greathouse IV, Sep 02 2015
-
Python
def a(n): return n - 2**(n.bit_length()-1) print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Jul 03 2021
-
Python
def A053645(n): return n&(1<
Chai Wah Wu, Jan 22 2023
Formula
a(n) = n - 2^A000523(n).
G.f.: 1/(1-x) * ((2x-1)/(1-x) + Sum_{k>=1} 2^(k-1)*x^2^k). - Ralf Stephan, Apr 18 2003
a(n) = (A006257(n)-1)/2. - N. J. A. Sloane, May 16 2003
a(1) = 0, a(2n) = 2a(n), a(2n+1) = 2a(n) + 1. - N. J. A. Sloane, Sep 13 2003
a(n) = A062050(n) - 1. - N. J. A. Sloane, Jun 12 2004
a(A004760(n+1)) = n. - Reinhard Zumkeller, May 20 2009
a(n) = f(n-1,1) with f(n,m) = if n < m then n else f(n-m,2*m). - Reinhard Zumkeller, May 20 2009
Conjecture: a(n) = (1 - A036987(n-1))*(1 + a(n-1)) for n > 1 with a(1) = 0. - Mikhail Kurkov, Jul 16 2019
Comments