cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A053651 Number of nonisomorphic cyclic subgroups of general linear group GL(n,2).

Original entry on oeis.org

1, 3, 5, 8, 13, 18, 27, 37, 51, 70, 96, 130, 176, 232, 296, 380, 490, 620, 793, 1019, 1277, 1624
Offset: 1

Views

Author

Vladeta Jovovic, Mar 22 2000

Keywords

Examples

			a(5)=13 because the orders of the elements of GL(5,2) are {1,2,3,4,5,6,7,8,12,14,15,21,31}.
		

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Cf. A053658 (for GL(n,3)), A053660 (for GL(n, 4)).
Cf. A062766 (for AGL(n,2)).

Extensions

a(15)-a(22) from Sean A. Irvine, Jan 10 2022

A053658 Number of nonisomorphic cyclic subgroups of general linear group GL(n,3).

Original entry on oeis.org

2, 6, 8, 18, 26, 42, 62, 94, 130, 188, 264, 372, 506, 678
Offset: 1

Views

Author

Vladeta Jovovic, Mar 22 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Extensions

a(11)-a(15) from Sean A. Irvine, Jan 10 2022

A062250 Number of cyclic subgroups of Chevalley group A_n(2) (the group of nonsingular n X n matrices over GF(2) ).

Original entry on oeis.org

1, 5, 79, 6974, 2037136, 2890467344, 14011554132032, 325330342132674560, 27173394819858612320256, 10158190320726534408118452224, 13156630408268153048253765001412608, 80280189722884518774834501142737770774528
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 01 2001

Keywords

Examples

			a(3) = 1/phi(1)+21/phi(2)+56/phi(3)+42/phi(4)+48/phi(7) = 79.
		

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Formula

a(n) = Sum_{d} |{g element of A_n(2): order(g)=d}|/phi(d), where phi=Euler totient function, cf. A000010.

Extensions

More terms from Vladeta Jovovic, Jul 04 2001

A062552 Number of cyclic subgroups of Chevalley group A_n(4) (the group of nonsingular n X n matrices over GF(4) ).

Original entry on oeis.org

2, 74, 37820, 332797040, 42906753609728, 96807463594555409408, 3287060262175777407524421632, 1849558511978449242738396356403003392, 16381469636294717667541649667987962803817283584, 2439141663752697521176587375190791943802198154311477755904
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 02 2001

Keywords

Crossrefs

Formula

a(n) = Sum_{d} |{g element of A_n(4): order(g)=d}| / phi(d), where phi is the Euler totient function. - Sean A. Irvine, Aug 07 2022

Extensions

More terms from Vladeta Jovovic, Jul 05 2001
More terms from Sean A. Irvine, Aug 07 2022
Showing 1-4 of 4 results.