cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053691 Number of 11-core partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 45, 66, 79, 102, 121, 154, 176, 220, 248, 297, 330, 430, 452, 552, 605, 720, 777, 935, 990, 1182, 1265, 1485, 1530, 1838, 1892, 2214, 2310, 2684, 2750, 3238, 3289, 3850, 3960, 4500, 4599, 5370, 5404, 6220, 6325, 7238
Offset: 0

Views

Author

James Sellers, Feb 14 2000

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ...
G.f. = q^5 + q^6 + 2*q^7 + 3*q^8 + 5*q^9 + 7*q^10 + 11*q^11 + 15*q^12 + ...
		

Crossrefs

Column t=11 of A175595.

Programs

  • Mathematica
    m = 50; CoefficientList[ Series[ Product[(1-q^(11*k))^11/(1-q^k), {k, 1, m}], {q, 0, m}], q] (* Jean-François Alcover, Jul 26 2011, after g.f. *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^11]^11 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 06 2014 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^11 + A)^11 / eta(x + A), n))}; /* Michael Somos, Nov 06 2014 */

Formula

Expansion of f(-x^11)^11 / f(-x) in powers of x where f() is a Ramanujan theta function.
Expansion of q^-5 * etq(q^11)^11 / eta(q) in powers of q. - Michael Somos, Nov 06 2014
Euler transform of period 11 sequence [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -10, ...]. - Michael Somos, Nov 06 2014
G.f. Product_{k>0} (1 - x^(11*k))^11 / (1 - x^k).