A053691 Number of 11-core partitions of n.
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 45, 66, 79, 102, 121, 154, 176, 220, 248, 297, 330, 430, 452, 552, 605, 720, 777, 935, 990, 1182, 1265, 1485, 1530, 1838, 1892, 2214, 2310, 2684, 2750, 3238, 3289, 3850, 3960, 4500, 4599, 5370, 5404, 6220, 6325, 7238
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ... G.f. = q^5 + q^6 + 2*q^7 + 3*q^8 + 5*q^9 + 7*q^10 + 11*q^11 + 15*q^12 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- F. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Inventiones Math. 101 (1990) 1-17.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Column t=11 of A175595.
Programs
-
Mathematica
m = 50; CoefficientList[ Series[ Product[(1-q^(11*k))^11/(1-q^k), {k, 1, m}], {q, 0, m}], q] (* Jean-François Alcover, Jul 26 2011, after g.f. *) a[ n_] := SeriesCoefficient[ QPochhammer[ x^11]^11 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 06 2014 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^11 + A)^11 / eta(x + A), n))}; /* Michael Somos, Nov 06 2014 */
Formula
Expansion of f(-x^11)^11 / f(-x) in powers of x where f() is a Ramanujan theta function.
Expansion of q^-5 * etq(q^11)^11 / eta(q) in powers of q. - Michael Somos, Nov 06 2014
Euler transform of period 11 sequence [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -10, ...]. - Michael Somos, Nov 06 2014
G.f. Product_{k>0} (1 - x^(11*k))^11 / (1 - x^k).
Comments