cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053693 Number of self-conjugate 8-core partitions of n.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 1, 1, 5, 2, 3, 4, 4, 5, 3, 4, 4, 6, 4, 5, 6, 4, 5, 7, 6, 7, 7, 5, 7, 7, 6, 5, 8, 5, 5, 6, 6, 6, 13, 11, 4, 11, 7, 9, 9, 6, 11, 12, 10, 8, 13, 9, 8, 15, 9, 7, 12, 8, 10, 14, 9, 10, 13, 13, 8, 16, 12, 12, 15, 8, 9, 14, 12, 11, 19, 11, 12, 18, 14, 11, 17
Offset: 0

Views

Author

James Sellers, Feb 14 2000

Keywords

Examples

			G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2^x*10 + 2*x^11 + ...
G.f. = q^21 + q^29 + q^45 + q^53 + q^61 + q^69 + q^77 + 2*q^85 + 2*q^93 + 2*q^101 + ...
		

Crossrefs

Cf. A053692.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^2 QPochhammer[ x^16]^4 / (QPochhammer[ x] QPochhammer[ x^4]), {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^16 + A)^4 / (eta(x + A) * eta(x^4 + A)), n))}; /* Michael Somos, Apr 28 2003 */

Formula

Euler transform of period 16 sequence [ 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, -4, ...]. - Michael Somos, Apr 28 2003
Expansion of q^(-21/8) * eta(q^2)^2 * eta(q^16)^4 / (eta(q) * eta(q^4)) in powers of q. - Michael Somos, Apr 28 2003
G.f.: product((1-q^(16*i))^4*(1-q^(4*i-2))/(1-q^(2*i-1)), i=1..infinity)