A053693 Number of self-conjugate 8-core partitions of n.
1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 1, 1, 5, 2, 3, 4, 4, 5, 3, 4, 4, 6, 4, 5, 6, 4, 5, 7, 6, 7, 7, 5, 7, 7, 6, 5, 8, 5, 5, 6, 6, 6, 13, 11, 4, 11, 7, 9, 9, 6, 11, 12, 10, 8, 13, 9, 8, 15, 9, 7, 12, 8, 10, 14, 9, 10, 13, 13, 8, 16, 12, 12, 15, 8, 9, 14, 12, 11, 19, 11, 12, 18, 14, 11, 17
Offset: 0
Examples
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2^x*10 + 2*x^11 + ... G.f. = q^21 + q^29 + q^45 + q^53 + q^61 + q^69 + q^77 + 2*q^85 + 2*q^93 + 2*q^101 + ...
Links
- F. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Inventiones Math. 101 (1990) 1-17.
Crossrefs
Cf. A053692.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^2 QPochhammer[ x^16]^4 / (QPochhammer[ x] QPochhammer[ x^4]), {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^16 + A)^4 / (eta(x + A) * eta(x^4 + A)), n))}; /* Michael Somos, Apr 28 2003 */
Formula
Euler transform of period 16 sequence [ 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, -4, ...]. - Michael Somos, Apr 28 2003
Expansion of q^(-21/8) * eta(q^2)^2 * eta(q^16)^4 / (eta(q) * eta(q^4)) in powers of q. - Michael Somos, Apr 28 2003
G.f.: product((1-q^(16*i))^4*(1-q^(4*i-2))/(1-q^(2*i-1)), i=1..infinity)