cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A094247 Expansion of (phi(-q^5)^2 - phi(-q)^2) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, 0, 0, -1, 1, -1, 0, 0, 2, 0, 0, -1, 2, -1, 0, -1, 0, 0, 0, 0, 1, -2, 0, 0, 2, 0, 0, -1, 0, -2, 0, -1, 2, 0, 0, -1, 2, 0, 0, 0, 1, 0, 0, 0, 1, -1, 0, -2, 2, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, -1, 2, 0, 0, -2, 0, 0, 0, -1, 2, -2, 0, 0, 0, 0, 0, -1, 1, -2, 0, 0, 2, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 2, -1, 0, -1, 2, 0, 0, -2
Offset: 1

Views

Author

Michael Somos, Apr 24 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - q^2 - q^4 + q^5 - q^8 + q^9 - q^10 + 2*q^13 - q^16 + 2*q^17 - q^18 - q^20 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q^5]^2 - EllipticTheta[ 4, 0, q]^2)/4, {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ -q^5] QPochhammer[ q^20] QPochhammer[q, q^2], {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^10 + A)^3 / (eta(x^2 + A) * eta(x^5 + A)),n))};
    
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, kronecker( -100, d)))}; /* Michael Somos, Aug 24 2006 */

Formula

Expansion of q * f(q^5) * f(-q^20) * chi(-q) in powers of q where f() and chi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^10)^3 / (eta(q^2) * eta(q^5)) in powers of q.
Euler transform of period 10 sequence [-1, 0, -1, 0, 0, 0, -1, 0, -1, -2, ...].
a(n) is multiplicative with a(2^e) = -1 if e > 0. a(5^e) = 1, a(p^e) = e+1 if p == 1, 5 (mod 8), a(p^e) = (1 + (-1)^e) / 2 if p == 3, 7 (mod 8).
G.f. is a period 1 Fourier series which satisfies f(-1 / (40 t)) = 4 (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A214316. - Michael Somos, Jul 12 2012
G.f.: x * Product_{k>0} (1 - x^k) * (1 - x^(10*k))^3 / ((1 - x^(2*k)) * (1 - x^(5*k))).
G.f.: Sum_{k>0} Kronecker( -100, k) * x^k / (1 + x^k) = Sum_{k>0} Kronecker( -25, k) * x^k * (1 - x^k)^2 / (1 - x^(4*k)). - Michael Somos, Jul 12 2012
a(n+1) = (-1)^n * A053694(n). a(4*n + 1) = A122190(n).
a(4*n + 3) = 0. a(2*n) = - A053694(n). - Michael Somos, Jul 12 2012

A122190 Expansion of q^(-1/4) * eta(q^2) * eta(q^5)^3 / (eta(q) * eta(q^10)) in powers of q.

Original entry on oeis.org

1, 1, 1, 2, 2, 0, 1, 2, 0, 2, 2, 1, 1, 2, 0, 2, 2, 0, 2, 0, 1, 2, 2, 0, 2, 2, 0, 2, 2, 2, 1, 1, 0, 0, 2, 0, 2, 2, 2, 2, 0, 0, 3, 2, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 4, 1, 2, 2, 0, 2, 1, 0, 0, 2, 2, 2, 2, 0, 2, 2, 0, 3, 2, 0, 0, 2, 0, 2, 2, 0, 2, 0, 2, 2, 0, 0, 2, 2, 0, 1, 2, 2, 2, 4, 0, 0, 2, 0, 2, 2, 1, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 24 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution product of A133100 and A133101. - Michael Somos, Feb 10 2015

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + x^6 + 2*x^7 + 2*x^9 + 2*x^10 + x^11 + ...
G.f. = q + q^5 + q^9 + 2*q^13 + 2*q^17 + q^25 + 2*q^29 + 2*q^37 + 2*q^41 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^5]^3 / (QPochhammer[ x] QPochhammer[ x^10]), {x, 0, n}]; (* Michael Somos, Feb 10 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^5 + A)^3 / (eta(x + A) * eta(x^10 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 4*n + 1; A=factor(n); prod(k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, if( p==5, 1, if( p%4==1, e+1, (1 + (-1)^e) / 2))))))};

Formula

Euler transform of period 10 sequence [ 1, 0, 1, 0, -2, 0, 1, 0, 1, -2, ...].
a(n) = b(4*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(5^e) = 1, b(p^e) = e+1 if p == 1 (mod 4), b(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
G.f.: Product_{k>0} (1 - x^(5*k))^2 * (1 + x^k) / (1 + x^(5*k)).
G.f.: Sum_{k>=0} a(k) * x^(4k+1) = Sum_{k>0 odd} x^k * (1 - x^(2*k)) * (1 - x^(6*k)) / (1 + x^(10*k)).
Expansion of f(x, x^4) * f(x^2, x^3) in powers of x where f() is the Ramanujan two-variable theta function.
Expansion of psi(x)^2 - x * psi(x^5)^2 in powers of x where psi() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (40 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133573.
a(n) = A053694(4*n) = A094247(4*n + 1).
a(3*n + 2) = a(5*n + 1) = a(n). - Michael Somos, Feb 10 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/5 = 1.256637... (A019694). - Amiram Eldar, Dec 29 2023

A133574 Expansion of (5 * phi(q^5)^2 - phi(q)^2) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, -1, 0, -1, 3, 0, 0, -1, -1, 3, 0, 0, -2, 0, 0, -1, -2, -1, 0, 3, 0, 0, 0, 0, 7, -2, 0, 0, -2, 0, 0, -1, 0, -2, 0, -1, -2, 0, 0, 3, -2, 0, 0, 0, 3, 0, 0, 0, -1, 7, 0, -2, -2, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, -1, 6, 0, 0, -2, 0, 0, 0, -1, -2, -2, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 17 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - q - q^2 - q^4 + 3*q^5 - q^8 - q^9 + 3*q^10 - 2*q^13 - q^16 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(20), 1), 78); A[1] - A[2] - A[3] - A[5] + 3*A[6] - A[9]; /* Michael Somos, Oct 31 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (5 EllipticTheta[ 3, 0, q^5]^2 - EllipticTheta[ 3, 0, q]^2)/4, {q, 0, n}]; (* Michael Somos, Oct 31 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^2 QPochhammer[ -q^5, q^10] / QPochhammer[ -q, q^2], {q, 0, n}]; (* Michael Somos, Oct 31 2015 *)
    a[ n_] := SeriesCoefficient[ (1/2) x^(-1/4) EllipticTheta[ 2, Pi/4, x^(1/2)]^2 QPochhammer[ -x, x^2] QPochhammer[ -x^5, x^10], {x, 0, n}]; (* Michael Somos, Oct 31 2015 *)
    a[ n_] := If[n < 1, Boole[n == 0], DivisorSum[ n, If[Mod[#, 5] == 0, 5 KroneckerSymbol[-4, #/5], 0] - KroneckerSymbol[-4, #] &]]; (* Michael Somos, Oct 31 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, if( d%5==0, kronecker( -4, d/5) * 5) - kronecker( -4, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); - prod(k = 1, matsize(A) [1], [p, e] = A[k, ]; if(p == 2, 1, p == 5, 1 - 4*e, p%4 == 1, e+1, 1-e%2 )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^10 + A)^2 / (eta(x^5 + A) * eta(x^20 + A)), n))};
    

Formula

Expansion of psi(-q)^2 * chi(q) * chi(q^5) in powers of q where psi(), chi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^4) * eta(q^10)^2 / (eta(q^5) * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [ -1, -1, -1, -2, 0, -1, -1, -2, -1, -2, -1, -2, -1, -1, 0, -2, -1, -1, -1, -2, ...].
Moebius transform is period 20 sequence [ -1, 0, 1, 0, 4, 0, 1, 0, -1, 0, 1, 0, -1, 0, -4, 0, -1, 0, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4), A(x^8)) where f(u1, u2, u4, u8) = (u1 - u2)^2 * (u4 - 2*u8)^2 - u2 * u4 * (u2 - u4) * (u2 - 2*u4).
a(n) = -b(n) where b() is multiplicative with b(2^e) = 1, b(5^e) = 1-4*e, b(p^e) = (1+(-1)^e)/2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = 10 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A053694.
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(4*k)) * (1 + x^(5*k)) / (1 + x^(10*k)).
G.f.: 1 - (Sum_{k>0} x^k / (1 + x^(2*k)) - 5 * x^(5*k) / (1 + x^(10*k))).
a(n) = (-1)^n * A133573(n).
Sum_{k=1..n} abs(a(k)) ~ (8*Pi/25) * n. - Amiram Eldar, Jan 27 2024

A185276 Kronecker symbol (-100 / n).

Original entry on oeis.org

0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0
Offset: 0

Views

Author

Michael Somos, Feb 19 2011

Keywords

Comments

This sequence is one of the three non-principal real Dirichlet characters modulo 20. The other two are Jacobi or Kronecker symbols {(20/n)} (or {(n/20)}) and A289741 = {(-20/n)}. - Jianing Song, Nov 14 2024

Examples

			x - x^3 - x^7 + x^9 - x^11 + x^13 + x^17 - x^19 + x^21 - x^23 - x^27 + ...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := KroneckerSymbol[-100, n]; Array[f, 100] (* Robert G. Wilson v *)
  • PARI
    {a(n) = kronecker( -100, n)}
    
  • PARI
    {a(n) = (n%2) * (-1) ^ (n\10) * kronecker( 5, n)}
    
  • PARI
    {a(n) = sign(n) * polcoeff( x * (1 - x^2) * (1 - x^6) / (1 + x^10) + x * O(x^abs(n)), abs(n))}
    
  • PARI
    {a(n) = local( A, p, e); if( n==0, 0, A = factor( abs(n)); sign(n) * prod( k=1, matsize( A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==2 || p==5, 0, if( p%4==1, 1, (-1)^e )))))}

Formula

a(n) is multiplicative with a(2^e) = a(5^e) = 0^e, a(p^e) = 1 if p == 1 (mod 4) and p>5, a(p^e) = (-1)^e if p == 3 (mod 4).
Euler transform of length 20 sequence [ 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1].
G.f.: x * (1 - x^2) * (1 - x^6) / (1 + x^10) = x / (1 + x^2) - x^5 / (1 + x^10).
a(n + 20) = -a(-n) = a(n). a(2*n) = a(5*n) = 0.
Dirichlet convolution with A000012 is A053694 offset 1.
Sum_{k=1..n} abs(a(k)) ~ 2*n/5. - Amiram Eldar, Jan 29 2024

Extensions

a(0) prepended by Jianing Song, Nov 14 2024
Showing 1-4 of 4 results.