cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053694 Number of self-conjugate 5-core partitions of n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 2, 0
Offset: 0

Views

Author

James Sellers, Feb 14 2000

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x + x^3 + x^4 + x^7 + x^8 + x^9 + 2*x^12 + x^15 + 2*x^16 + x^17 + ...
q + q^2 + q^4 + q^5 + q^8 + q^9 + q^10 + 2*q^13 + q^16 + 2*q^17 + q^18 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 258, Entry 9(iii).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[3, 0, q]^2 - EllipticTheta[3, 0, q^5]^2) / (4 q), {q, 0, n}] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[-q, q^2] QPochhammer[q^5, q^5] QPochhammer[q^20, q^20], {q, 0, n}] (* Michael Somos, Jul 11 2011 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=0, n\2, 1 + x^(2*k + 1), 1 + x * O(x^n)) * prod( k=0, n\10, (1 - x^(10*k + 10))^2 / (1 + x^(10*k + 5)), 1 + x*O(x^n)), n))}
    
  • PARI
    {a(n) = if( n<0, 0, n++; sumdiv( n, d, kronecker( -100, d)))}
    
  • PARI
    {a(n) = if( n<0, 0, n++; direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -100, p) * X))[n])}
    
  • PARI
    {a(n) = local(A); if(n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^5 + A) * eta(x^20 + A) / eta(x + A) / eta(x^4 + A), n))}

Formula

G.f.: product((1-q^(10*i))^2*(1-q^(10*i-5))*(1-q^(4*i-2))/((1-q^(2*i-1))*(1-q^(20*i-10))), i=1..200)
a(n) = b(n + 1) where b(n) is multiplicative and b(2^e) = b(5^e) = 1, b(p^e) = e+1 if p == 1, 5 (mod 8), b(p^e) = (1+(-1)^e)/2 if p == 3, 7 (mod 8).
Expansion of (phi(x)^2 - phi(x^5)^2) / (4*x) = chi(x) * f(-x^5) * f(-x^20) in powers of x where phi(), chi(), f() are Ramanujan theta functions.
From Michael Somos, Apr 25 2003: (Start)
Expansion of q^(-1) * eta(q^2)^2 * eta(q^5) * eta(q^20) / (eta(q) * eta(q^4)) in powers of q.
Euler transform of period 20 sequence [1, -1, 1, 0, 0, -1, 1, 0, 1, -2, 1, 0, 1, -1, 0, 0, 1, -1, 1, -2, ...].
G.f.: Product_{k>0} (1 - x^(10*k))^2 * (1 + x^(2*k - 1)) / (1 + x^(10*k - 5)). (End)
a(4*n) = A122190(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/5. - Amiram Eldar, Jan 27 2024

A094247 Expansion of (phi(-q^5)^2 - phi(-q)^2) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, 0, 0, -1, 1, -1, 0, 0, 2, 0, 0, -1, 2, -1, 0, -1, 0, 0, 0, 0, 1, -2, 0, 0, 2, 0, 0, -1, 0, -2, 0, -1, 2, 0, 0, -1, 2, 0, 0, 0, 1, 0, 0, 0, 1, -1, 0, -2, 2, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, -1, 2, 0, 0, -2, 0, 0, 0, -1, 2, -2, 0, 0, 0, 0, 0, -1, 1, -2, 0, 0, 2, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 2, -1, 0, -1, 2, 0, 0, -2
Offset: 1

Views

Author

Michael Somos, Apr 24 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - q^2 - q^4 + q^5 - q^8 + q^9 - q^10 + 2*q^13 - q^16 + 2*q^17 - q^18 - q^20 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q^5]^2 - EllipticTheta[ 4, 0, q]^2)/4, {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ -q^5] QPochhammer[ q^20] QPochhammer[q, q^2], {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^10 + A)^3 / (eta(x^2 + A) * eta(x^5 + A)),n))};
    
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, kronecker( -100, d)))}; /* Michael Somos, Aug 24 2006 */

Formula

Expansion of q * f(q^5) * f(-q^20) * chi(-q) in powers of q where f() and chi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^10)^3 / (eta(q^2) * eta(q^5)) in powers of q.
Euler transform of period 10 sequence [-1, 0, -1, 0, 0, 0, -1, 0, -1, -2, ...].
a(n) is multiplicative with a(2^e) = -1 if e > 0. a(5^e) = 1, a(p^e) = e+1 if p == 1, 5 (mod 8), a(p^e) = (1 + (-1)^e) / 2 if p == 3, 7 (mod 8).
G.f. is a period 1 Fourier series which satisfies f(-1 / (40 t)) = 4 (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A214316. - Michael Somos, Jul 12 2012
G.f.: x * Product_{k>0} (1 - x^k) * (1 - x^(10*k))^3 / ((1 - x^(2*k)) * (1 - x^(5*k))).
G.f.: Sum_{k>0} Kronecker( -100, k) * x^k / (1 + x^k) = Sum_{k>0} Kronecker( -25, k) * x^k * (1 - x^k)^2 / (1 - x^(4*k)). - Michael Somos, Jul 12 2012
a(n+1) = (-1)^n * A053694(n). a(4*n + 1) = A122190(n).
a(4*n + 3) = 0. a(2*n) = - A053694(n). - Michael Somos, Jul 12 2012

A133573 Expansion of ( 5 * phi(-q^5)^2 - phi(-q)^2 ) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, -1, 0, -1, -3, 0, 0, -1, 1, 3, 0, 0, 2, 0, 0, -1, 2, -1, 0, 3, 0, 0, 0, 0, -7, -2, 0, 0, 2, 0, 0, -1, 0, -2, 0, -1, 2, 0, 0, 3, 2, 0, 0, 0, -3, 0, 0, 0, 1, 7, 0, -2, 2, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, -1, -6, 0, 0, -2, 0, 0, 0, -1, 2, -2, 0, 0, 0, 0, 0, 3, 1, -2, 0, 0, -6, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 2, -1, 0, 7, 2, 0, 0, -2
Offset: 0

Views

Author

Michael Somos, Sep 17 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Multiplicative because this sequence is the inverse Moebius transform of a multiplicative sequence. - Andrew Howroyd, Aug 06 2018

Examples

			G.f. = 1 + q - q^2 - q^4 - 3*q^5 - q^8 + q^9 + 3*q^10 + 2*q^13 - q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (5 EllipticTheta[ 4, 0, q^5]^2 - EllipticTheta[ 4, 0, q]^2)/4, {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^2 QPochhammer[ q^5, q^10] / QPochhammer[ q, q^2], {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * sumdiv(n, d, if( d%5==0, kronecker(-4, d/5) * 5) - kronecker(-4, d)))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x*O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^5+A) / (eta(x + A) * eta(x^10 + A)), n))};

Formula

Expansion of eta(q^2)^3 * eta(q^5) / ( eta(q) * eta(q^10) ) in powers of q.
Euler transform of period 10 sequence [ 1, -2, 1, -2, 0, -2, 1, -2, 1, -2, ...].
Moebius transform is period 40 sequence [ 1, -2, -1, 0, -4, 2, -1, 0, 1, 8, -1, 0, 1, 2, 4, 0, 1, -2, -1, 0, 1, 2, -1, 0, -4, -2, -1, 0, 1, -8, -1, 0, 1, -2, 4, 0, 1, 2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (40 t)) = 20 (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A122190.
a(n) = (-1)^n * A133574(n). a(2*n) = A133574(n). a(4*n + 1) = A214316(n). a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0. a(9*n) = a(n). - Michael Somos, Jul 12 2012
Sum_{k=1..n} abs(a(k)) ~ (8*Pi/25) * n. - Amiram Eldar, Jan 27 2024
Showing 1-3 of 3 results.