cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A067025 Exponents of prime-powers corresponding to terms of A053705(n)+2.

Original entry on oeis.org

2, 2, 2, 2, 4, 2, 5, 2, 6, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 9, 4, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 7, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, Dec 29 2001

Keywords

Crossrefs

Programs

  • PARI
    lista(pmax) = {my(f); forprime(p = 2, pmax, f = factor(p+2); if(#f~ == 1 && f[1,2] > 1, print1(f[1,2], ", ")));} \\ Amiram Eldar, Jul 18 2024

Extensions

More terms from Amiram Eldar, Jul 18 2024

A067024 Smallest prime p such that p+2 has exactly n distinct prime factors.

Original entry on oeis.org

2, 13, 103, 1153, 15013, 255253, 4849843, 111546433, 4360010653, 100280245063, 5245694198743, 152125131763603, 7149881192889433, 421842990380476663, 16294579238595022363, 1106494163767990292293, 74135108972455349583763, 4632891063696575353839163, 278970415063349480483707693, 24012274383139350058948392193
Offset: 1

Views

Author

Labos Elemer, Dec 29 2001

Keywords

Examples

			For n = 1,...,7 the factors of 2+a(n) are as follows: 2*2, 3*5, 3*5*7, 3*5*7*11, 3*5*7*11*13, 3*5*7*11*13*17, 3*5*7*11*13*17*19; i.e., a(n) = A002110(n+1)/2 which is prime for n = 2,...,7.
		

Crossrefs

Programs

  • Python
    # see linked program

Formula

a(n) = Min_{p in A000040 ; A001221(p+2) = n}.

Extensions

a(8)-a(15) from Donovan Johnson, Jan 21 2009
a(16) and beyond from Michael S. Branicky, Feb 07 2023

A053704 Prime powers p^w (w >= 2) such that p^w-2 is prime.

Original entry on oeis.org

4, 9, 25, 49, 81, 169, 243, 361, 729, 841, 1369, 1849, 2209, 2401, 3721, 5041, 6859, 7921, 10609, 11449, 14641, 16129, 17161, 19321, 19683, 28561, 29791, 29929, 36481, 44521, 49729, 50653, 54289, 57121, 66049, 85849, 97969, 113569, 128881
Offset: 1

Views

Author

Labos Elemer, Feb 14 2000

Keywords

Comments

Terms k of A025475 such that k - 2 is prime.

Examples

			4 = 2^2 is a term since 4-2 = 2 is prime.
243 = 3^5 is a term because 241 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[130000],!PrimeQ[#]&&PrimePowerQ[#]&&PrimeQ[#-2]&] (* Harvey P. Dale, Oct 07 2020 *)
    seq[max_] := Module[{s = {}, p = 2}, While[p^2 <= max, s = Join[s, Select[p^Range[2, Floor[Log[p, max]]], PrimeQ[# - 2] &]]; p = NextPrime[p]]; Union[s]]; seq[150000] (* Amiram Eldar, Aug 27 2024 *)

Formula

a(n) = A053705(n) + 2. - Amiram Eldar, Aug 27 2024

Extensions

Definition clarified by Harvey P. Dale, Oct 07 2020
Showing 1-3 of 3 results.