cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A067027 Numbers n such that (prime(n)# + 4)/2 is a prime, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 11, 12, 15, 17, 29, 48, 63, 77, 88, 187, 190, 338, 1133, 1311, 1832, 2782, 2907, 3180, 3272, 5398, 17530
Offset: 1

Views

Author

Labos Elemer, Dec 29 2001

Keywords

Comments

Numbers n such that [A002110(n)/2]+2 is prime.
These primes are products of consecutive odd primes plus 2: 2+[3.5.7.....p(n)] if n is here.
a(19)-a(22) are Fermat and Lucas PRPs. (prime(2782)# + 4)/2 has 10865 digits. PFGW Version 1.2.0 for Windows [FFT v23.8] Primality testing (p(2782)#+4)/2 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 5 Running N+1 test using discriminant 13, base 1+sqrt(13) (p(2782)#+4)/2 is Fermat and Lucas PRP! - Jason Earls, Dec 12 2006
a(28) > 25000. - Robert Price, Sep 29 2017

Crossrefs

Programs

Extensions

More terms from Robert G. Wilson v, Dec 30 2001
a(19)-a(22) from Jason Earls, Dec 12 2006
a(23) from Ray Chandler, Jun 16 2013
a(24)-a(27) from Robert Price, Sep 29 2017

A067026 (Prime(n)# - 4)/2 is prime, where x# is the primorial A034386(x).

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 20, 27, 39, 83, 103, 122, 129, 145, 279, 393, 608, 798, 929, 1164, 1266, 1491, 2043, 3276, 3426, 7119, 15711, 18424
Offset: 1

Views

Author

Labos Elemer, Dec 29 2001

Keywords

Comments

n such that A002110(n)/2 - 2 is prime.
a(33) > 25000. - Robert Price, Sep 29 2017

Crossrefs

Programs

  • Mathematica
    p = 1; Do[p = p*Prime[n]; If[PrimeQ[(p - 4)/2], Print[n]], {n, 1, 400} ]
    Flatten[Position[Rest[FoldList[Times,1,Prime[Range[2100]]]],?(PrimeQ[(#-4)/2]&)]] (* _Harvey P. Dale, Nov 22 2014 *)

Extensions

More terms from Robert G. Wilson v, Dec 30 2001
a(21)-a(27) from Ray Chandler, Jun 16 2013
a(28)-a(32) from Robert Price, Sep 29 2017

A096177 Primes p such that primorial(p)/2 + 2 is prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 29, 31, 37, 47, 59, 109, 223, 307, 389, 457, 1117, 1151, 2273, 9137, 10753, 15727, 25219, 26459, 29251, 30259, 52901, 194471
Offset: 1

Views

Author

Hugo Pfoertner, Jun 27 2004

Keywords

Comments

a(27) > 172000. - Robert Price, May 10 2019
Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 16 2019

Examples

			a(3)=7 because primorial(7)/2 + 2 = A070826(4) + 2 = 2*3*5*7/2 + 2 = 107 is prime.
		

Crossrefs

Cf. A070826, A096178 primes of the form primorial(p)/2+2, A096547 primes p such that primorial(p)/2-2 is prime, A067024 smallest p+2 that has n distinct prime factors, A014545 primorial primes, A087398.

Programs

  • Mathematica
    k = 1; Do[If[PrimeQ[n], k = k*n; If[PrimeQ[k/2 + 2], Print[n]]], {n, 2, 100000}] (* Ryan Propper, Jul 03 2005 *)
  • PARI
    P=1/2;forprime(p=2,1e4,if(isprime((P*=p)+2), print1(p", "))) \\ Charles R Greathouse IV, Mar 14 2011

Extensions

7 additional terms, corresponding to probable primes, from Ryan Propper, Jul 03 2005
Edited by T. D. Noe, Oct 30 2008
a(26) from Robert Price, May 10 2019
a(27) from Tyler Busby, Mar 17 2024

A087398 Primes of the form primorial(P(k))/2-2.

Original entry on oeis.org

13, 103, 1153, 15013, 255253, 4849843, 111546433, 100280245063, 152125131763603, 16294579238595022363, 278970415063349480483707693, 11992411764462614086353260819346129198103, 481473710367991963528473107950567214598209565303106537707981745633
Offset: 1

Views

Author

Cino Hilliard, Oct 21 2003

Keywords

Comments

Twinmorial numbers are the partial products of twin primes. Sum of reciprocals = 0.08756985926348207565388288916..
The next term (a(14)) has 174 digits. - Harvey P. Dale, Mar 30 2013

Crossrefs

Cf. A096177 primes k such that primorial(k)/2+2 is prime, A096178 primes of the form primorial(k)/2+2, A096547 Primes k such that primorial(k)/2-2 is prime, A067024 smallest p+2 that has n distinct prime factors, A014545 primorial primes.

Programs

  • Mathematica
    Select[#/2-2&/@Rest[FoldList[Times,1,Prime[Range[100]]]],PrimeQ] (* Harvey P. Dale, Mar 30 2013 *)
  • PARI
    twimorial(n) = { s=0; p=3; forprime(x=5,n, if(isprime(x-2),c1++); p=p*x; if(isprime(p-2), print1(p-2","); c2++; s+=1.0/(p-2); ) ); print(); print(s) }
    
  • PARI
    v=[];pr=1; forprime(p=3,2357,pr*=p; if(ispseudoprime(pr-2),v=concat(v,pr-2))) \\ Charles R Greathouse IV, Feb 14 2011

Formula

Twins 3*5 = 15 = p+2. p=13.

Extensions

Description corrected by Hugo Pfoertner, Jun 25 2004
One more term (a(13)) added by Harvey P. Dale, Mar 30 2013

A096178 Primes of the form primorial(p)/2+2.

Original entry on oeis.org

3, 5, 17, 107, 15017, 3234846617, 100280245067, 3710369067407, 307444891294245707, 961380175077106319537, 139867498408927468089138080936033904837498617
Offset: 1

Views

Author

Hugo Pfoertner, Jun 27 2004

Keywords

Comments

Primes of the form A070826(n)+2.

Examples

			a(4) = 107 because 107 is a prime of the form primorial(7)/2 + 2 = A070826(4) + 2 = 2*3*5*7/2 + 2.
		

Crossrefs

Cf. A070826, A096177 (primorial(p)/2+2 is prime), A096547 (primorial(p)/2-2 is prime), A067024 (smallest p+2 that has n distinct prime factors), A014545 (primorial primes), A087398.

Programs

  • PARI
    for(n=1,30,p=prod(k=1,n,prime(k))/2+2;if(ispseudoprime(p),print1(p,", "))) \\ Hugo Pfoertner, Dec 26 2019

Formula

a(n) = A070826(A096177(n)) + 2. - Amiram Eldar, Dec 26 2019

Extensions

a(1) inserted by Amiram Eldar, Dec 26 2019

A100277 Primes resulting from A100276.

Original entry on oeis.org

13, 103, 1153, 15013, 255253, 4849843, 111546433, 6581239663, 467268016213, 34110565183693, 2831176910246683, 251974745011954963, 24441550266159631603, 4668336100836489636553, 1573229265981897007519033
Offset: 1

Views

Author

Herman H. Rosenfeld (herm3(AT)pacbell.net), Dec 29 2004

Keywords

Examples

			3*5-2=13 is prime;
3*5*7-2=103 is prime;
3*5*7*11-2=1153 is prime;
3*5*7*11*13-2=15013 is prime.
		

Crossrefs

Cf. A100276.
Cf. A067024. [From R. J. Mathar, Sep 02 2008]

Extensions

Corrected and extended by Emeric Deutsch, Mar 26 2005

A098027 Smallest prime p such that p+2 is a product of exactly n distinct primes.

Original entry on oeis.org

3, 13, 103, 1153, 15013, 255253, 4849843, 111546433, 4360010653, 100280245063, 5245694198743, 152125131763603, 7149881192889433, 421842990380476663, 16294579238595022363, 1106494163767990292293, 74135108972455349583763
Offset: 1

Views

Author

Lekraj Beedassy, Sep 10 2004

Keywords

Comments

In most cases a(n) = pn! - 2, where pn! is "factorial of odd primes": from 3 to n-th odd prime. - Zak Seidov - Zak Seidov and Don Reble, Mar 10 2006

Examples

			3+2=5 (1 prime), 13+2=15=3*5 (2 primes), 103+2=105=3*5*7 (3 primes), ...
1153 is the 4th entry in the sequence because it is followed by primes 1783, 1993, 2143, 2803, ... with the property 1153+2 = 3*5*7*11, 1783+2 = 3*5*7*17, 1993+2 = 3*5*7*19, 2143+2 = 3*5*11*13, 2803+2 = 3*5*11*17, ...
		

Crossrefs

Cf. A067024 [From R. J. Mathar, Sep 02 2008]

Extensions

Extended by Ray Chandler, Sep 18 2004
More terms from Zak Seidov and Don Reble, Mar 10 2006
Corrected by Don Reble, Apr 03 2006
Showing 1-7 of 7 results.