A067027
Numbers n such that (prime(n)# + 4)/2 is a prime, where x# is the primorial A034386(x).
Original entry on oeis.org
1, 2, 3, 4, 6, 10, 11, 12, 15, 17, 29, 48, 63, 77, 88, 187, 190, 338, 1133, 1311, 1832, 2782, 2907, 3180, 3272, 5398, 17530
Offset: 1
-
p = 1; Do[p = p*Prime[n]; If[PrimeQ[(p + 4)/2], Print[n]], {n, 1, 400} ]
Flatten[Position[FoldList[Times,Prime[Range[3000]]],?(PrimeQ[ (#+4)/2]&)]] (* _Harvey P. Dale, May 24 2015 *)
-
n=0;pr=1/2;forprime(p=2,1e4,n++;pr*=p;if(ispseudoprime(pr+2),print1(n", "))) \\ Charles R Greathouse IV, Jul 25 2011
A067026
(Prime(n)# - 4)/2 is prime, where x# is the primorial A034386(x).
Original entry on oeis.org
3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 20, 27, 39, 83, 103, 122, 129, 145, 279, 393, 608, 798, 929, 1164, 1266, 1491, 2043, 3276, 3426, 7119, 15711, 18424
Offset: 1
A096177
Primes p such that primorial(p)/2 + 2 is prime.
Original entry on oeis.org
2, 3, 5, 7, 13, 29, 31, 37, 47, 59, 109, 223, 307, 389, 457, 1117, 1151, 2273, 9137, 10753, 15727, 25219, 26459, 29251, 30259, 52901, 194471
Offset: 1
a(3)=7 because primorial(7)/2 + 2 = A070826(4) + 2 = 2*3*5*7/2 + 2 = 107 is prime.
-
k = 1; Do[If[PrimeQ[n], k = k*n; If[PrimeQ[k/2 + 2], Print[n]]], {n, 2, 100000}] (* Ryan Propper, Jul 03 2005 *)
-
P=1/2;forprime(p=2,1e4,if(isprime((P*=p)+2), print1(p", "))) \\ Charles R Greathouse IV, Mar 14 2011
7 additional terms, corresponding to probable primes, from
Ryan Propper, Jul 03 2005
A087398
Primes of the form primorial(P(k))/2-2.
Original entry on oeis.org
13, 103, 1153, 15013, 255253, 4849843, 111546433, 100280245063, 152125131763603, 16294579238595022363, 278970415063349480483707693, 11992411764462614086353260819346129198103, 481473710367991963528473107950567214598209565303106537707981745633
Offset: 1
Cf.
A096177 primes k such that primorial(k)/2+2 is prime,
A096178 primes of the form primorial(k)/2+2,
A096547 Primes k such that primorial(k)/2-2 is prime,
A067024 smallest p+2 that has n distinct prime factors,
A014545 primorial primes.
-
Select[#/2-2&/@Rest[FoldList[Times,1,Prime[Range[100]]]],PrimeQ] (* Harvey P. Dale, Mar 30 2013 *)
-
twimorial(n) = { s=0; p=3; forprime(x=5,n, if(isprime(x-2),c1++); p=p*x; if(isprime(p-2), print1(p-2","); c2++; s+=1.0/(p-2); ) ); print(); print(s) }
-
v=[];pr=1; forprime(p=3,2357,pr*=p; if(ispseudoprime(pr-2),v=concat(v,pr-2))) \\ Charles R Greathouse IV, Feb 14 2011
A096178
Primes of the form primorial(p)/2+2.
Original entry on oeis.org
3, 5, 17, 107, 15017, 3234846617, 100280245067, 3710369067407, 307444891294245707, 961380175077106319537, 139867498408927468089138080936033904837498617
Offset: 1
a(4) = 107 because 107 is a prime of the form primorial(7)/2 + 2 = A070826(4) + 2 = 2*3*5*7/2 + 2.
-
for(n=1,30,p=prod(k=1,n,prime(k))/2+2;if(ispseudoprime(p),print1(p,", "))) \\ Hugo Pfoertner, Dec 26 2019
Original entry on oeis.org
13, 103, 1153, 15013, 255253, 4849843, 111546433, 6581239663, 467268016213, 34110565183693, 2831176910246683, 251974745011954963, 24441550266159631603, 4668336100836489636553, 1573229265981897007519033
Offset: 1
Herman H. Rosenfeld (herm3(AT)pacbell.net), Dec 29 2004
3*5-2=13 is prime;
3*5*7-2=103 is prime;
3*5*7*11-2=1153 is prime;
3*5*7*11*13-2=15013 is prime.
A098027
Smallest prime p such that p+2 is a product of exactly n distinct primes.
Original entry on oeis.org
3, 13, 103, 1153, 15013, 255253, 4849843, 111546433, 4360010653, 100280245063, 5245694198743, 152125131763603, 7149881192889433, 421842990380476663, 16294579238595022363, 1106494163767990292293, 74135108972455349583763
Offset: 1
3+2=5 (1 prime), 13+2=15=3*5 (2 primes), 103+2=105=3*5*7 (3 primes), ...
1153 is the 4th entry in the sequence because it is followed by primes 1783, 1993, 2143, 2803, ... with the property 1153+2 = 3*5*7*11, 1783+2 = 3*5*7*17, 1993+2 = 3*5*7*19, 2143+2 = 3*5*11*13, 2803+2 = 3*5*11*17, ...
Showing 1-7 of 7 results.
Comments