cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A096547 Primes p such that primorial(p)/2 - 2 is prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 31, 41, 53, 71, 103, 167, 431, 563, 673, 727, 829, 1801, 2699, 4481, 6121, 7283, 9413, 10321, 12491, 17807, 30307, 31891, 71917, 172517
Offset: 1

Views

Author

Hugo Pfoertner, Jun 27 2004

Keywords

Comments

Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 14 2019
a(32) > 180000. - Tyler Busby, Mar 29 2024

Examples

			Prime 7 is a term because primorial(7)/2 - 2 = A034386(7)/2 - 2 = 2*3*5*7/2 - 2 = 103 is prime.
		

Crossrefs

Cf. A070826, A096177 primes p such that primorial(p)/2+2 is prime, A096178 primes of the form primorial(p)/2+2, A014545 primorial primes, A087398.
Cf. A034386.

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, `if`(isprime(n), n, 1)*b(n-1)) end:
    q:= p-> isprime(p) and isprime(b(p)/2-2):
    select(q, [$1..500])[];
  • Mathematica
    k = 1; Do[k *= Prime[n]; If[PrimeQ[k - 2], Print[Prime[n]]], {n, 2, 3276}] (* Ryan Propper, Oct 25 2005 *)
    Prime[#]&/@Flatten[Position[FoldList[Times,Prime[Range[1000]]]/2-2,?PrimeQ]] (* _Harvey P. Dale, Jun 09 2023 *)

Extensions

5 more terms from Ryan Propper, Oct 25 2005
a(29)-a(31) from Tyler Busby, Mar 16 2024

A087398 Primes of the form primorial(P(k))/2-2.

Original entry on oeis.org

13, 103, 1153, 15013, 255253, 4849843, 111546433, 100280245063, 152125131763603, 16294579238595022363, 278970415063349480483707693, 11992411764462614086353260819346129198103, 481473710367991963528473107950567214598209565303106537707981745633
Offset: 1

Views

Author

Cino Hilliard, Oct 21 2003

Keywords

Comments

Twinmorial numbers are the partial products of twin primes. Sum of reciprocals = 0.08756985926348207565388288916..
The next term (a(14)) has 174 digits. - Harvey P. Dale, Mar 30 2013

Crossrefs

Cf. A096177 primes k such that primorial(k)/2+2 is prime, A096178 primes of the form primorial(k)/2+2, A096547 Primes k such that primorial(k)/2-2 is prime, A067024 smallest p+2 that has n distinct prime factors, A014545 primorial primes.

Programs

  • Mathematica
    Select[#/2-2&/@Rest[FoldList[Times,1,Prime[Range[100]]]],PrimeQ] (* Harvey P. Dale, Mar 30 2013 *)
  • PARI
    twimorial(n) = { s=0; p=3; forprime(x=5,n, if(isprime(x-2),c1++); p=p*x; if(isprime(p-2), print1(p-2","); c2++; s+=1.0/(p-2); ) ); print(); print(s) }
    
  • PARI
    v=[];pr=1; forprime(p=3,2357,pr*=p; if(ispseudoprime(pr-2),v=concat(v,pr-2))) \\ Charles R Greathouse IV, Feb 14 2011

Formula

Twins 3*5 = 15 = p+2. p=13.

Extensions

Description corrected by Hugo Pfoertner, Jun 25 2004
One more term (a(13)) added by Harvey P. Dale, Mar 30 2013

A096178 Primes of the form primorial(p)/2+2.

Original entry on oeis.org

3, 5, 17, 107, 15017, 3234846617, 100280245067, 3710369067407, 307444891294245707, 961380175077106319537, 139867498408927468089138080936033904837498617
Offset: 1

Views

Author

Hugo Pfoertner, Jun 27 2004

Keywords

Comments

Primes of the form A070826(n)+2.

Examples

			a(4) = 107 because 107 is a prime of the form primorial(7)/2 + 2 = A070826(4) + 2 = 2*3*5*7/2 + 2.
		

Crossrefs

Cf. A070826, A096177 (primorial(p)/2+2 is prime), A096547 (primorial(p)/2-2 is prime), A067024 (smallest p+2 that has n distinct prime factors), A014545 (primorial primes), A087398.

Programs

  • PARI
    for(n=1,30,p=prod(k=1,n,prime(k))/2+2;if(ispseudoprime(p),print1(p,", "))) \\ Hugo Pfoertner, Dec 26 2019

Formula

a(n) = A070826(A096177(n)) + 2. - Amiram Eldar, Dec 26 2019

Extensions

a(1) inserted by Amiram Eldar, Dec 26 2019

A178641 Primes p such that primorial(p)/2 + 2 is composite.

Original entry on oeis.org

11, 17, 19, 23, 41, 43, 53, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 311, 313, 317, 331, 337
Offset: 1

Views

Author

Keywords

Examples

			3*5*7*11 + 2 = 13*89 is composite.
		

Crossrefs

Programs

  • Mathematica
    pp=1;lst={};Do[p=Prime[n];pp*=p;If[ !PrimeQ[pp+2],AppendTo[lst,p]],{n,2,2*5!}];lst

A178642 Primes p such that primorial(p)/2 - 2 is not prime.

Original entry on oeis.org

3, 29, 37, 43, 47, 59, 61, 67, 73, 79, 83, 89, 97, 101, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347
Offset: 1

Views

Author

Keywords

Examples

			3*5*7*11*13*17*19*23*29 - 2 = 43*167*450473 is composite.
		

Crossrefs

Programs

  • Mathematica
    pp=1;lst={};Do[p=Prime[n];pp*=p;If[ !PrimeQ[pp-2],AppendTo[lst,p]],{n,2,2*5!}];lst
    Transpose[Select[With[{pros=Rest[FoldList[Times,1,Prime[Range[100]]]]}, Table[ {Prime[n], pros[[n]]},{n,100}]],!PrimeQ[Last[#]/2-2]&]][[1]] (* Harvey P. Dale, Mar 02 2012 *)

A082603 a(n) is the first prime greater than a(n-1) such that a(n)*a(n-1)+2 is a prime, with a(1)=3.

Original entry on oeis.org

3, 5, 7, 11, 19, 23, 37, 47, 73, 227, 241, 251, 271, 317, 367, 563, 607, 641, 727, 761, 829, 1091, 1117, 1223, 1249, 1451, 1579, 1601, 1627, 1721, 1741, 1787, 1873, 1877, 1933, 1973, 2017, 2087, 2137, 2153, 2287, 2351, 2521, 2687, 2707, 2741, 2851, 3041, 3121, 3137, 3181, 3191, 3361, 3371, 3457, 3461, 3541, 3557, 3607, 3701, 3877, 3881, 3907, 3947
Offset: 1

Views

Author

Jon Perry, May 23 2003

Keywords

Examples

			a(3)=7, as 3 + 2 = 5, 3*5 + 2 = 17, 5*7 + 2 = 37, etc.
		

Crossrefs

Programs

  • Mathematica
    f[s_List] := Block[{p = pp = s[[-1]]}, While[p = NextPrime@p; !PrimeQ[ p*pp + 2],]; Append[s, p]]; Nest[f, {3}, 63] (* Robert G. Wilson v, Nov 08 2010 *)
    fpg[p1_]:=Module[{p2=NextPrime[p1]},While[!PrimeQ[p1 p2+2],p2=NextPrime[ p2]];p2]; NestList[fpg,3,70] (* Harvey P. Dale, May 31 2021 *)
  • PARI
    { vp=vector(20); vp[1]=3; vc=1; vpt=3; print1(3","); for (vc=2,20, forprime (p=vp[vc-1]+1,10000, if (isprime(p*vp[vc-1]+2),vp[vc]=p;vpt*=p; print1(vp[vc]","); break))) }
    
  • PARI
    {v=3;print1(3",");forprime(p=5,10000,vp=v*p;if(isprime(vp+2),v=vp;print1(p",")))} \\ Zak Seidov, Nov 07 2010

Extensions

Definition and example corrected to match the sequence and PARI programming, two cross references added, and sequence extended by Robert G. Wilson v, Nov 08 2010

A178648 Primes p such that primorial(p)/2 +- 2 are primes.

Original entry on oeis.org

5, 7, 13, 31
Offset: 1

Views

Author

Keywords

Comments

No further terms up to the 500th prime, i.e., 3571. - Harvey P. Dale, May 09 2023

Examples

			3*5 = 15; 15-2 and 15+2 are primes.
		

Crossrefs

Intersection of A096177 and A096547.

Programs

  • Mathematica
    pp=1;lst={};Do[p=Prime[n];pp*=p;If[PrimeQ[pp-2]&&PrimeQ[pp+2],Print[Date[],p];AppendTo[lst,p]],{n,2,4!}];lst
    Module[{nn=15,pr,pm},pr=Prime[Range[nn]];pm=FoldList[Times,pr];Select[Thread[ {pr,pm}],AllTrue[ #[[2]]/2+{2,-2},PrimeQ]&]][[;;,1]] (* Harvey P. Dale, May 09 2023 *)
Showing 1-7 of 7 results.