cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A178641 Primes p such that primorial(p)/2 + 2 is composite.

Original entry on oeis.org

11, 17, 19, 23, 41, 43, 53, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 311, 313, 317, 331, 337
Offset: 1

Views

Author

Keywords

Examples

			3*5*7*11 + 2 = 13*89 is composite.
		

Crossrefs

Programs

  • Mathematica
    pp=1;lst={};Do[p=Prime[n];pp*=p;If[ !PrimeQ[pp+2],AppendTo[lst,p]],{n,2,2*5!}];lst

A178648 Primes p such that primorial(p)/2 +- 2 are primes.

Original entry on oeis.org

5, 7, 13, 31
Offset: 1

Views

Author

Keywords

Comments

No further terms up to the 500th prime, i.e., 3571. - Harvey P. Dale, May 09 2023

Examples

			3*5 = 15; 15-2 and 15+2 are primes.
		

Crossrefs

Intersection of A096177 and A096547.

Programs

  • Mathematica
    pp=1;lst={};Do[p=Prime[n];pp*=p;If[PrimeQ[pp-2]&&PrimeQ[pp+2],Print[Date[],p];AppendTo[lst,p]],{n,2,4!}];lst
    Module[{nn=15,pr,pm},pr=Prime[Range[nn]];pm=FoldList[Times,pr];Select[Thread[ {pr,pm}],AllTrue[ #[[2]]/2+{2,-2},PrimeQ]&]][[;;,1]] (* Harvey P. Dale, May 09 2023 *)
Showing 1-2 of 2 results.