cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A178642 Primes p such that primorial(p)/2 - 2 is not prime.

Original entry on oeis.org

3, 29, 37, 43, 47, 59, 61, 67, 73, 79, 83, 89, 97, 101, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347
Offset: 1

Views

Author

Keywords

Examples

			3*5*7*11*13*17*19*23*29 - 2 = 43*167*450473 is composite.
		

Crossrefs

Programs

  • Mathematica
    pp=1;lst={};Do[p=Prime[n];pp*=p;If[ !PrimeQ[pp-2],AppendTo[lst,p]],{n,2,2*5!}];lst
    Transpose[Select[With[{pros=Rest[FoldList[Times,1,Prime[Range[100]]]]}, Table[ {Prime[n], pros[[n]]},{n,100}]],!PrimeQ[Last[#]/2-2]&]][[1]] (* Harvey P. Dale, Mar 02 2012 *)

A178648 Primes p such that primorial(p)/2 +- 2 are primes.

Original entry on oeis.org

5, 7, 13, 31
Offset: 1

Views

Author

Keywords

Comments

No further terms up to the 500th prime, i.e., 3571. - Harvey P. Dale, May 09 2023

Examples

			3*5 = 15; 15-2 and 15+2 are primes.
		

Crossrefs

Intersection of A096177 and A096547.

Programs

  • Mathematica
    pp=1;lst={};Do[p=Prime[n];pp*=p;If[PrimeQ[pp-2]&&PrimeQ[pp+2],Print[Date[],p];AppendTo[lst,p]],{n,2,4!}];lst
    Module[{nn=15,pr,pm},pr=Prime[Range[nn]];pm=FoldList[Times,pr];Select[Thread[ {pr,pm}],AllTrue[ #[[2]]/2+{2,-2},PrimeQ]&]][[;;,1]] (* Harvey P. Dale, May 09 2023 *)
Showing 1-2 of 2 results.