A053707 First differences of A025475, powers of a prime but not prime.
3, 4, 1, 7, 9, 2, 5, 17, 15, 17, 40, 4, 3, 41, 74, 13, 33, 54, 18, 151, 17, 96, 104, 112, 120, 63, 307, 38, 312, 168, 199, 139, 10, 12, 192, 408, 316, 356, 240, 375, 393, 424, 128, 288, 912, 320, 298, 30, 1032, 271, 1217, 792, 408, 840, 432, 286, 602, 1872, 984, 504
Offset: 1
Keywords
Examples
2^0 = 1 is the first number that meets the definition of A025475, the next one is 2^2 = 4, hence a(1) = 4 - 1 = 3. a(3) = A025475(4) - A025475(3) = 9 - 8 = 1; a(11) = A025475(12) - A025475(11) = 121 - 81 = 40.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
Crossrefs
Cf. A025475.
Programs
-
Mathematica
Differences@ Join[{1}, Select[Range@ 16200, And[! PrimeQ@ #, PrimePowerQ@ #] &]] (* Michael De Vlieger, Jul 04 2016 *)
-
PARI
{k=1; for(n=2,16300,if(matsize(factor(n))[1]==1&&factor(n)[1,2]>1,d=n-k; print1(d,","); k=n))} \\ Klaus Brockhaus, Sep 25 2003
-
Python
from sympy import primepi, integer_nthroot def A053707(n): if n==1: return 3 def f(x): return int(n-2+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))) kmin, kmax = 1,2 while f(kmax)+1 >= kmax: kmax <<= 1 rmin, rmax = 1, kmax while True: kmid = kmax+kmin>>1 if f(kmid)+1 < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break while True: rmid = rmax+rmin>>1 if f(rmid) < rmid: rmax = rmid else: rmin = rmid if rmax-rmin <= 1: break return kmax-rmax # Chai Wah Wu, Aug 13 2024
Extensions
Edited by Klaus Brockhaus, Sep 25 2003
Comments