A053723 Number of 5-core partitions of n.
1, 1, 2, 3, 5, 2, 6, 5, 7, 5, 12, 6, 12, 6, 10, 11, 16, 7, 20, 15, 12, 12, 22, 10, 25, 12, 20, 18, 30, 10, 32, 21, 24, 16, 30, 21, 36, 20, 24, 25, 42, 12, 42, 36, 35, 22, 46, 22, 43, 25, 32, 36, 52, 20, 60, 30, 40, 30, 60, 30, 62, 32, 42, 43, 60, 24, 66, 48, 44, 30, 72, 35, 72
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 2*x^5 + 6*x^6 + 5*x^7 + 7*x^8 + ... G.f. = q + q^2 + 2*q^3 + 3*q^4 + 5*q^5 + 2*q^6 + 6*q^7 + 5*q^8 + 7*q^9 + ...
References
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988; see p. 54 (1.52).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Subhajit Bandyopadhyay and Nayandeep Deka Baruah, Arithmetic Identities for Some Analogs of the 5-Core Partition Function, J. Int. Seq. (2024) Vol. 27, Art. No. 24.4.5.
- Subhajit Bandyopadhyay and Nayandeep Deka Baruah, Arithmetic Identities for Some Analogs of 5-core Partition Function, arXiv:2409.02034 [math.NT], 2024.
- Bruce C. Berndt, The Rogers-Ramanujan continued fraction.
- Bruce C. Berndt et al., The Rogers-Ramanujan continued fraction, Journal of Computational and Applied Mathematics, Vol. 105, No. 1-2 (1999), 9-24.
- Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635-652. see pages 636-637.
- Frank Garvan, Dongsu Kim, and Dennis Stanton, Cranks and t-cores.
- Frank Garvan, Dongsu Kim, and Dennis Stanton, Cranks and t-cores, Inventiones Math. 101 (1990) 1-17.
- Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
- Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers, 2016.
Crossrefs
Programs
-
Mathematica
a[n_]:=Total[KroneckerSymbol[#, 5]*n/# & /@ Divisors[n]]; Table[a[n], {n, 1, 73}] (* Jean-François Alcover, Jul 26 2011, after PARI prog. *) a[ n_] := SeriesCoefficient[ QPochhammer[ x^5]^5 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Jul 13 2012 *) a[ n_] := With[{m = n + 1}, If[ m < 1, 0, DivisorSum[ m, m/# KroneckerSymbol[ 5, #] &]]]; (* Michael Somos, Jul 13 2012 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^5 + A)^5 / eta(x + A), n))};
-
PARI
{a(n) = if( n<0, 0, n++; sumdiv( n, d, kronecker( d, 5) * n/d))};
-
PARI
{a(n) = if( n<0, 0, n++; direuler( p=2, n, 1 / ((1 - p*X) * (1 - kronecker( p, 5) * X)))[n])};
Formula
Given g.f. A(x), then B(q) = q * A(q) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 2 * u*v*w + 4 * u*w^2 - u^2*w. - Michael Somos, May 02 2005
G.f.: (1/x) * (Sum_{k>0} Kronecker(k, 5) * x^k / (1 - x^k)^2). - Michael Somos, Sep 02 2005
G.f.: Product_{k>0} (1 - x^(5*k))^5 / (1 - x^k) = 1/x * (Sum_{k>0} k * x^k * (1 - x^k) * (1 - x^(2*k)) / (1 - x^(5*k))). - Michael Somos, Jun 17 2005
G.f.: (1/x) * Sum_{a, b, c, d, e in Z^5} x^((a^2 + b^2 + c^2 + d^2 + e^2) / 10) where a + b + c + d + e = 0, (a, b, c, d, e) == (0, 1, 2, 3, 4) (mod 5). - [Dyson 1972] Michael Somos, Aug 08 2007
Euler transform of period 5 sequence [ 1, 1, 1, 1, -4, ...].
Expansion of q^(-1) * eta(q^5)^5 / eta(q) in powers of q.
a(n) = b(n + 1) where b() is multiplicative with b(5^e) = 5^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 4 (mod 5), b(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 2, 3 (mod 5).
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = (1/5)^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A109064. - Michael Somos, May 17 2015
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A328717. - Amiram Eldar, Nov 23 2023
Comments