cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053724 Number of 7-core partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 8, 15, 16, 21, 21, 28, 24, 44, 36, 49, 45, 63, 49, 74, 64, 85, 72, 105, 82, 133, 112, 120, 120, 165, 122, 180, 147, 186, 176, 225, 168, 255, 210, 245, 224, 324, 219, 338, 276, 341, 294, 385, 288, 441, 352, 410, 366, 518, 360, 506, 435, 504
Offset: 0

Views

Author

James Sellers, Feb 11 2000

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 8*x^7 + 15*x^8 + ...
G.f. = q^2 + q^3 + 2*q^4 + 3*q^5 + 5*q^6 + 7*q^7 + 11*q^8 + 8*q^9 + ...
		

References

  • A. Balog, H. Darmon, K. Ono, Congruence for Fourier coefficients of half-integral weight modular forms and special values of L-functions, pp. 105-128 of Analytic number theory, Vol. 1, Birkhauser, Boston, 1996, see page 107.
  • B. Berndt, Commentary on Ramanujan's Papers, pp. 357-426 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 372 (4).

Crossrefs

Cf. A053723, column t=7 of A175595.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^7]^7 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^7 + A)^7 / eta(x + A), n))}; /* Michael Somos, Apr 16 2005 */

Formula

Expansion of q^(-2) * eta(q^7)^7 / eta(q) in powers of q.
Euler transform of period 7 sequence [ 1, 1, 1, 1, 1, 1, -6, ...].
a(7*n + 5) == 0 (mod 7).
G.f.: Product_{k>0} (1 - q^(7*k))^7 / (1 - q^k).