A053726 "Flag numbers": number of dots that can be arranged in successive rows of K, K-1, K, K-1, K, ..., K-1, K (assuming there is a total of L > 1 rows of size K > 1).
5, 8, 11, 13, 14, 17, 18, 20, 23, 25, 26, 28, 29, 32, 33, 35, 38, 39, 41, 43, 44, 46, 47, 48, 50, 53, 56, 58, 59, 60, 61, 62, 63, 65, 67, 68, 71, 72, 73, 74, 77, 78, 80, 81, 83, 85, 86, 88, 89, 92, 93, 94, 95, 98, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 113, 116
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
select( {is_A053726(n)=n>4 && !isprime(n*2-1)}, [1..115]) \\ M. F. Hasler, Aug 02 2022
-
Python
from sympy import isprime def ok(n): return n > 1 and not isprime(2*n-1) print(list(filter(ok, range(1, 117)))) # Michael S. Branicky, May 08 2021
-
Python
from sympy import primepi def A053726(n): if n == 1: return 5 m, k = n, (r:=primepi(n)) + n + (n>>1) while m != k: m, k = k, (r:=primepi(k)) + n + (k>>1) return r+n # Chai Wah Wu, Aug 02 2024
-
Scheme
;; with Antti Karttunen's IntSeq-library. (define A053726 (MATCHING-POS 1 1 (lambda (n) (and (> n 1) (not (prime? (+ n n -1))))))) ;; Antti Karttunen, Apr 17 2015
-
Scheme
;; with Antti Karttunen's IntSeq-library. (define (A053726 n) (+ n (A000720 (A071904 n)))) ;; Antti Karttunen, Apr 17 2015
Formula
a(n) = A008508(n) + n + 1.
From Antti Karttunen, Apr 17 2015: (Start)
a(n) = n + A000720(A071904(n)). [The above formula reduces to this. A000720(k) gives number of primes <= k, and A071904 gives the n-th odd composite number.]
a(n) = A104275(n+1). (End)
a(n) = A047845(n+1)+1. - Amiram Eldar, Jul 30 2024
Extensions
More terms from Douglas Winston (douglas.winston(AT)srupc.com), Sep 11 2003
Comments