cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053739 Partial sums of A014166.

Original entry on oeis.org

1, 6, 22, 63, 155, 344, 709, 1383, 2587, 4685, 8273, 14323, 24416, 41119, 68595, 113590, 187030, 306605, 500950, 816410, 1327986, 2157046, 3499982, 5674578, 9195035, 14893364, 24115804, 39040633, 63192397, 102273950, 165512723, 267839033, 433410661, 701315739, 1134800215
Offset: 0

Views

Author

Barry E. Williams, Feb 13 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A014166 and A000045.
Right-hand column 10 of triangle A011794.
Cf. A228074.

Programs

  • GAP
    List([0..35], n-> Fibonacci(n+11)-(n^4+22*n^3+203*n^2+974*n + 2112)/24); # G. C. Greubel, Sep 06 2019
  • Magma
    [Fibonacci(n+11) - (n^4+22*n^3+203*n^2+974*n+2112)/24: n in [0..35]]; // G. C. Greubel, Sep 06 2019
    
  • Maple
    with(combinat); seq(fibonacci(n+11)-(n^4 + 22*n^3 + 203*n^2 + 974*n + 2112)/4!, n = 0..35); # G. C. Greubel, Sep 06 2019
  • Mathematica
    Table[Fibonacci[n+11] -(n^4+22*n^3+203*n^2+974*n+2112)/4!, {n,0,35}] (* G. C. Greubel, Sep 06 2019 *)
  • PARI
    vector(35, n, m=n-1; fibonacci(n+10) - (m^4+22*m^3+203*m^2+974*m +2112)/4!) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    [fibonacci(n+11) - (n^4+22*n^3+203*n^2+974*n+2112)/24 for n in (0..35)] # G. C. Greubel, Sep 06 2019
    

Formula

a(n) = Sum_{i=0..floor(n/2)} binomial(n+5-i, n-2*i) for n >= 0.
a(n) = a(n-1) + a(n-2) + C(n+4,4); n >= 0; a(-1)=0.
G.f.: 1/((1-x-x^2)*(1-x)^5). - R. J. Mathar, May 22 2013
a(n) = Fibonacci(n+11) - (n^4 + 22*n^3 + 203*n^2 + 974*n + 2112)/4!. - G. C. Greubel, Sep 06 2019

Extensions

Terms a(28) onward added by G. C. Greubel, Sep 06 2019