A053739 Partial sums of A014166.
1, 6, 22, 63, 155, 344, 709, 1383, 2587, 4685, 8273, 14323, 24416, 41119, 68595, 113590, 187030, 306605, 500950, 816410, 1327986, 2157046, 3499982, 5674578, 9195035, 14893364, 24115804, 39040633, 63192397, 102273950, 165512723, 267839033, 433410661, 701315739, 1134800215
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hung Viet Chu, Partial Sums of the Fibonacci Sequence, arXiv:2106.03659 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (6,-14,15,-5,-4,4,-1).
Programs
-
GAP
List([0..35], n-> Fibonacci(n+11)-(n^4+22*n^3+203*n^2+974*n + 2112)/24); # G. C. Greubel, Sep 06 2019
-
Magma
[Fibonacci(n+11) - (n^4+22*n^3+203*n^2+974*n+2112)/24: n in [0..35]]; // G. C. Greubel, Sep 06 2019
-
Maple
with(combinat); seq(fibonacci(n+11)-(n^4 + 22*n^3 + 203*n^2 + 974*n + 2112)/4!, n = 0..35); # G. C. Greubel, Sep 06 2019
-
Mathematica
Table[Fibonacci[n+11] -(n^4+22*n^3+203*n^2+974*n+2112)/4!, {n,0,35}] (* G. C. Greubel, Sep 06 2019 *)
-
PARI
vector(35, n, m=n-1; fibonacci(n+10) - (m^4+22*m^3+203*m^2+974*m +2112)/4!) \\ G. C. Greubel, Sep 06 2019
-
Sage
[fibonacci(n+11) - (n^4+22*n^3+203*n^2+974*n+2112)/24 for n in (0..35)] # G. C. Greubel, Sep 06 2019
Formula
a(n) = Sum_{i=0..floor(n/2)} binomial(n+5-i, n-2*i) for n >= 0.
a(n) = a(n-1) + a(n-2) + C(n+4,4); n >= 0; a(-1)=0.
G.f.: 1/((1-x-x^2)*(1-x)^5). - R. J. Mathar, May 22 2013
a(n) = Fibonacci(n+11) - (n^4 + 22*n^3 + 203*n^2 + 974*n + 2112)/4!. - G. C. Greubel, Sep 06 2019
Extensions
Terms a(28) onward added by G. C. Greubel, Sep 06 2019