A053746 Positions of '2's in the decimal expansion of Pi, where positions 1, 2, 3, ... correspond to digits 3, 1, 4, ...
7, 17, 22, 29, 34, 54, 64, 74, 77, 84, 90, 94, 103, 113, 115, 136, 137, 141, 150, 161, 166, 174, 186, 187, 204, 222, 230, 242, 245, 261, 276, 281, 290, 293, 299, 303, 327, 330, 334, 336, 338, 355, 375, 381, 407
Offset: 1
Examples
Pi = 3.1415926... where the first '2' occurs as the 7th digit.
Links
Crossrefs
Cf. A000796 (decimal expansion (or digits) of Pi).
Cf. A037001 (= a(n) - 1: the same with different offset).
Cf. A035117 (first occurrence of at least n '1's), A050281 (n '2's), A050282, A050283, A050284, A050286, A050287, A048940 (n '9's).
Cf. A096755 (first occurrence of exactly n '1's), A096756, A096757, A096758, A096759, A096760, A096761, A096762, A096763 (exactly n '9's), A050279 (exactly n '0's).
Cf. A176341: first occurrence of n in Pi's digits.
Cf. A088566 (primes in this sequence).
Programs
-
Mathematica
Flatten[Position[RealDigits[Pi, 10, 1000][[1]], 2]] (* Vincenzo Librandi, Oct 07 2013 *)
-
PARI
A053746_upto(N=999)={localprec(N+20); select(d->d==2, digits(Pi\10^-N), 1)} \\ M. F. Hasler, Jul 28 2024
Formula
a(n) = A037001(n) + 1. - Georg Fischer, May 31 2021
Extensions
Changed offset from 0 to 1 by Vincenzo Librandi, Oct 07 2013
Comments