A053778 First of four consecutive primes that comprise two sets of twin primes.
5, 11, 101, 137, 179, 191, 419, 809, 821, 1019, 1049, 1481, 1871, 1931, 2081, 2111, 2969, 3251, 3359, 3371, 3461, 4217, 4229, 4259, 5009, 5651, 5867, 6689, 6761, 6779, 6947, 7331, 7547, 8219, 8969, 9419, 9431, 9437, 10007, 11057, 11159, 11699, 12239
Offset: 1
Keywords
Examples
These primes initiate consecutive p quadruples as follows: [p,p+2,p+6k,p+6k+2]. For 6k=6,12,18,24,30,36,54 such a p =5,137,1931,9437,2968, 20441 and 48677 resp. Such a quadruple is [48677,48679,48731,48733], with [2,52,2] difference pattern.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..5274.
- Eric Weisstein's World of Mathematics, Prime Quadruplet
Programs
-
Mathematica
Transpose[Select[Partition[Prime[Range[1500]],4,1],#[[4]]-#[[3]]== #[[2]]-#[[1]]== 2&]][[1]] (* Harvey P. Dale, Jul 07 2011 *)
-
PARI
forprime( p=1,10^5, isprime(p+2) || next; isprime(nextprime(p+4)+2) && print1(p","))
-
PARI
nextA053778(p)=until( isprime(nextprime(p+1)+2), until( p+2==p=nextprime(p+1),)); p-2
-
PARI
p=0; A053778=vector(100,i, p=nextA053778(p+1))
Formula
Extensions
Edited by N. J. A. Sloane, Apr 13 2008, at the suggestion of M. F. Hasler.
Comments