cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053801 Number of basis partitions of n+36 with Durfee square size 6.

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 40, 62, 94, 140, 202, 286, 398, 542, 728, 966, 1262, 1630, 2084, 2634, 3300, 4100, 5048, 6170, 7490, 9028, 10816, 12884, 15258, 17978, 21082, 24602, 28586, 33080, 38124, 43776, 50090, 57114, 64916, 73560, 83104, 93626
Offset: 0

Views

Author

James Sellers, Mar 27 2000

Keywords

Programs

  • PARI
    {a(n)=if(n<0, 0, polcoeff( prod(k=1,6, (1+x^k)/(1-x^k), 1+x*O(x^n)), n))} /* Michael Somos, Sep 02 2006 */
    
  • PARI
    Vec((1 + x^2)*(1 - x + x^2 - x^3 + x^4)*(1 - x^2 + x^4)*(1 + x^4) / ((1 - x)^6*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^50)) \\ Colin Barker, Jan 02 2020

Formula

Euler transform of length 12 sequence [ 2, 1, 2, 1, 2, 1, 0, -1, 0, -1, 0, -1]. - Michael Somos, Sep 02 2006
G.f.: (1+q)(1+q^2)(1+q^3)(1+q^4)(1+q^5)(1+q^6)/((1-q)(1-q^2)(1-q^3)(1-q^4)(1-q^5)(1-q^6)).
a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3) - 6*a(n-4) + 7*a(n-5) - 6*a(n-6) + 6*a(n-7) - 6*a(n-8) + 7*a(n-9) - 6*a(n-10) + 3*a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14) for n>14. - Colin Barker, Jan 02 2020