A053802 Number of basis partitions of n+49 with Durfee square size 7.
1, 2, 4, 8, 14, 24, 40, 64, 98, 148, 218, 314, 446, 622, 854, 1158, 1550, 2050, 2684, 3478, 4464, 5682, 7172, 8982, 11170, 13796, 16928, 20648, 25040, 30198, 36234, 43262, 51410, 60824, 71656, 84074, 98266, 114430, 132780, 153556, 177008
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- M. D. Hirschhorn, Basis partitions and Rogers-Ramanujan partitions, Discrete Math. 205 (1999), 241-243.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,0,-1,-1,0,1,1,2,0,0,0,-2,-1,-1,0,1,1,0,1,0,0,-1,-1,1).
Programs
-
Mathematica
CoefficientList[Series[Times@@(1+x^Range[7])/Times@@(1-x^Range[7]),{x,0,40}],x] (* Harvey P. Dale, Aug 30 2017 *)
-
PARI
Vec((1+x)*(1+x^2)*(1+x^3)*(1+x^4)*(1+x^5)*(1+x^6)*(1+x^7) / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)) + O(x^40)) \\ Colin Barker, Jan 02 2020
Formula
G.f.: (1+q)(1+q^2)(1+q^3)(1+q^4)(1+q^5)(1+q^6)(1+q^7)/((1-q)(1-q^2)(1-q^3)(1-q^4)(1-q^5)(1-q^6)(1-q^7)).
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) - a(n-8) + a(n-10) + a(n-11) + 2*a(n-12) - 2*a(n-16) - a(n-17) - a(n-18) + a(n-20) + a(n-21) + a(n-23) - a(n-26) - a(n-27) + a(n-28) for n>28. - Colin Barker, Jan 02 2020