A053832 Sum of digits of n written in base 12.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 7, 8
Offset: 0
Examples
a(20) = 1 + 8 = 9 because 20 is written as 18 base 12.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Jeffrey O. Shallit, Problem 6450, Advanced Problems, The American Mathematical Monthly, Vol. 91, No. 1 (1984), pp. 59-60; Two series, solution to Problem 6450, ibid., Vol. 92, No. 7 (1985), pp. 513-514.
- Robert Walker, Self Similar Sloth Canon Number Sequences.
- Eric Weisstein's World of Mathematics, Duodecimal.
- Eric Weisstein's World of Mathematics, Digit Sum.
Programs
-
Haskell
a053832 n = q 0 $ divMod n 12 where q r (0, d) = r + d q r (m, d) = q (r + d) $ divMod m 12 -- Reinhard Zumkeller, May 15 2011
-
Mathematica
Table[Plus @@ IntegerDigits[n, 12], {n, 0, 85}] (* or *) Nest[ Flatten[ #1 /. a_Integer -> Table[a + i, {i, 0, 11}]] &, {0}, 2] (* Robert G. Wilson v, Jul 27 2006 *)
-
PARI
a(n)=if(n<1,0,if(n%12,a(n-1)+1,a(n/12)))
Formula
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(12n+i) = a(n)+i for 0 <= i <= 11.
a(n) = n-11*(Sum_{k>0} floor(n/12^k)) = n-11*A064459(n). (End)
a(n) = A138530(n,12) for n > 11. - Reinhard Zumkeller, Mar 26 2008
Sum_{n>=1} a(n)/(n*(n+1)) = 12*log(12)/11 (Shallit, 1984). - Amiram Eldar, Jun 03 2021
Comments