cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053979 Triangle T(n,k) giving number of rooted maps regardless of genus with n edges and k nodes (n >= 0, k = 1..n+1).

Original entry on oeis.org

1, 1, 1, 3, 5, 2, 15, 32, 22, 5, 105, 260, 234, 93, 14, 945, 2589, 2750, 1450, 386, 42, 10395, 30669, 36500, 22950, 8178, 1586, 132, 135135, 422232, 546476, 388136, 166110, 43400, 6476, 429, 2027025, 6633360, 9163236, 7123780, 3463634, 1092560, 220708, 26333, 1430
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

Comments

Triangle T(n,k), read by rows, given by (1,2,3,4,5,6,7,8,9,...) DELTA (1,1,1,1,1,1,1,1,1,1,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 21 2011.
A127160*A007318 as infinite lower triangular matrices. - Philippe Deléham, Jan 06 2012

Examples

			A(x;t) = t + (t + t^2)*x + (3*t + 5*t^2 + 2*t^3)*x^2 + (15*t + 32*t^2 + 22*t^3 + 5*t^4)*x^3 + ...
Triangle begins :
n\k [1]     [2]     [3]     [4]     [5]     [6]    [7]   [8]
[0] 1;
[1] 1,      1;
[2] 3,      5,      2;
[3] 15,     32,     22,     5;
[4] 105,    260,    234,    93,     14;
[5] 945,    2589,   2750,   1450,   386,    42;
[6] 10395,  30669,  36500,  22950,  8178,   1586,  132;
[7] 135135, 422232, 546476, 388136, 166110, 43400, 6476, 429;
[8] ...
		

Crossrefs

Programs

  • Maple
    G:=t/(1-(t+1)*z/(1-(t+2)*z/(1-(t+3)*z/(1-(t+4)*z/(1-(t+5)*z/(1-(t+6)*z/(1-(t+7)*z/(1-(t+8)*z/(1-(t+9)*z/(1-(t+10)*z/(1-(t+11)*z/(1-(t+12)*z)))))))))))):Gser:=simplify(series(G,z=0,10)):P[0]:=t:for n from 1 to 9 do P[n]:=sort(expand(coeff(Gser,z^n))) od:seq(seq(coeff(P[n],t^k),k=1..n+1),n=0..9); # Emeric Deutsch, Apr 01 2005
  • Mathematica
    g = t/Fold[1-((t+#2)*z)/#1&, 1, Range[12, 1, -1]]; T[n_, k_] := SeriesCoefficient[g, {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
  • PARI
    A053979_ser(N,t='t) = {
      my(x='x+O('x^N), y0=1, y1=0, n=1);
      while(n++, y1 = (1 + t*x*y0^2 + 2*x^2*y0')/(1-x);
        if (y1 == y0, break()); y0 = y1); y0;
    };
    concat(apply(p->Vecrev(p), Vec(A053979_ser(10))))
    \\ test: y=A053979_ser(50); 2*x^2*deriv(y,x) == -t*x*y^2 + (1-x)*y - 1
    \\ Gheorghe Coserea, May 31 2017
    
  • PARI
    A053979_seq(N) = {
      my(t='t, R=vector(N), S=vector(N)); R[1]=S[1]=t;
      for (n=2, N,
        R[n] = t*subst(S[n-1],t,t+1);
        S[n] = R[n] + sum(k=1, n-1, R[k]*S[n-k]));
      apply(p->Vecrev(p), R/t);
    };
    concat(A053979_seq(10))
    \\ test: y=t*Ser(apply(p->Polrev(p,'t), A053979_seq(50)),'x); y == t + x*y^2 + x*y + 2*x^2*deriv(y,x) && y == t + x*y*subst(y,t,t+1) \\ Riccati eq && Dyck eq
    \\ Gheorghe Coserea, May 31 2017

Formula

G.f.: t/(1-(t+1)z/(1-(t+2)z/(1-(t+3)z/(1-(t+4)z/(1-(t+5)z/(1-... (Eq. (5) in the Arques-Beraud reference). - Emeric Deutsch, Apr 01 2005
Sum_{k = 0..n} (-1)^k*2^(n-k)*T(n,k) = A128709(n). Sum_{k = 0..n} T(n,k) = A000698(n+1). - Philippe Deléham, Mar 24 2007
From Peter Bala, Dec 22 2011: (Start)
The o.g.f. in the form G(x,t) = x/(1 - (t+1)*x^2/(1 - (t+2)*x^2/(1 - (t+3)*x^2/(1 - (t+4)*x^2/(1 - ... ))))) = x + (1+t)*x^3 + (3+5*t+2*t^2)*x^5 + ... satisfies the Riccati equation (1 - t*x*G)*G = x + x^3*dG/dx. The cases t = 0, t = 1 and t = 2 give A001147, A000698 and A167872, respectively. The cases t = -2, t = -3 and t = -4 give rational generating functions for aerated and signed versions of A000012, A025192 and A084120, respectively.
The identity G(x,1+t) = 1/(1+t)(1/x-1/G(x,t)) provided t <> -1 allows us to express G(x,n), n = 1,2,..., in terms of G(x,0), a generating function for the double factorial numbers.
Writing G(x,t) = Sum_{n >= 1} R(n,t)*x^(2*n-1), the row generating polynomials R(n,t) satisfy the recurrence R(n+1,t) = (2*n-1)*R(n,t) + t*sum {k = 1..n} R(k,t)*R(n+1-k,t) with initial condition R(1,t) = 1.
G(x,t-1) = x + t*x^3 + (t+2*t^2)*x^5 + (3*t+7*t^2+5*t^3)*x^7 + ... is an o.g.f. for A127160.
The function b(x,t) = - t*G(1/x,t) satisfies the partial differential equation d/dx(b(x,t)) = -(t + (x + b(x,t))*b(x,t)). Hence the differential operator (D^2 + x*D + t), where D = d/dx, factorizes as (D - a(x,t))*(D - b(x,t)), where a(x,t) = -(x + b(x,t)). In the particular case t = -n, a negative integer, the functions a(x,-n) and b(x,-n) become rational functions of x expressible as the ratio of Hermite polynomials.
(End)

Extensions

More terms from Emeric Deutsch, Apr 01 2005