A305873 Coefficients of polynomials g_b(x) that arise in the generating function for rooted maps (A053979).
1, 3, 5, 15, 65, 60, 105, 804, 1730, 1105, 945, 10824, 39110, 55645, 27120, 10395, 162357, 854250, 1987270, 2105070, 828250, 135135, 2714445, 19180410, 63897550, 108878610, 91692550, 30220800, 2027025, 50301360, 452984532, 2004435096, 4836052370, 6479714440, 4523710100, 1282031525
Offset: 1
Links
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. I, J. Comb. Theory B 13 (1972), 192-218, eq. (5a).
Programs
-
Maple
A305873:= proc(b,x) local gn1,k ; option remember; if b = 0 or b= 1 then return 1 ; else gn1 := procname(b-1,x) ; add(procname(k,x)*procname(b-k,x),k=1..b-1) ; gbx := %*x+(2*(b-1)*(1+2*x)+1)*gn1 ; expand(gbx+2*x*(x+1)*diff(gn1,x)) ; end if; end proc: for b from 1 to 8 do gx := A305873(b,x) ; for l from 0 to b-1 do printf("%d,",coeff(gx,x,l)) ; end do: printf("\n") ; end do:
-
Mathematica
A305873[b_, x_] := A305873[b, x] = Module[{gn1, k, s}, If[b == 0 || b == 1, Return@1, gn1 = A305873[b - 1, x]; s = Sum[A305873[k, x]*A305873[b - k, x], {k, 1, b - 1}]; gbx = s*x + (2*(b - 1)*(1 + 2*x) + 1)*gn1; Expand[gbx + 2*x*(x + 1)*D[gn1, x]]]]; Reap[For[b = 1, b <= 8, b++, gx = A305873[b, x]; For[l = 0, l <= b - 1, l++, Sow[Coefficient[gx, x, l]]]]][[2, 1]] (* Jean-François Alcover, Nov 09 2023, after Maple program *)
Comments