cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A053979 Triangle T(n,k) giving number of rooted maps regardless of genus with n edges and k nodes (n >= 0, k = 1..n+1).

Original entry on oeis.org

1, 1, 1, 3, 5, 2, 15, 32, 22, 5, 105, 260, 234, 93, 14, 945, 2589, 2750, 1450, 386, 42, 10395, 30669, 36500, 22950, 8178, 1586, 132, 135135, 422232, 546476, 388136, 166110, 43400, 6476, 429, 2027025, 6633360, 9163236, 7123780, 3463634, 1092560, 220708, 26333, 1430
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

Comments

Triangle T(n,k), read by rows, given by (1,2,3,4,5,6,7,8,9,...) DELTA (1,1,1,1,1,1,1,1,1,1,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 21 2011.
A127160*A007318 as infinite lower triangular matrices. - Philippe Deléham, Jan 06 2012

Examples

			A(x;t) = t + (t + t^2)*x + (3*t + 5*t^2 + 2*t^3)*x^2 + (15*t + 32*t^2 + 22*t^3 + 5*t^4)*x^3 + ...
Triangle begins :
n\k [1]     [2]     [3]     [4]     [5]     [6]    [7]   [8]
[0] 1;
[1] 1,      1;
[2] 3,      5,      2;
[3] 15,     32,     22,     5;
[4] 105,    260,    234,    93,     14;
[5] 945,    2589,   2750,   1450,   386,    42;
[6] 10395,  30669,  36500,  22950,  8178,   1586,  132;
[7] 135135, 422232, 546476, 388136, 166110, 43400, 6476, 429;
[8] ...
		

Crossrefs

Programs

  • Maple
    G:=t/(1-(t+1)*z/(1-(t+2)*z/(1-(t+3)*z/(1-(t+4)*z/(1-(t+5)*z/(1-(t+6)*z/(1-(t+7)*z/(1-(t+8)*z/(1-(t+9)*z/(1-(t+10)*z/(1-(t+11)*z/(1-(t+12)*z)))))))))))):Gser:=simplify(series(G,z=0,10)):P[0]:=t:for n from 1 to 9 do P[n]:=sort(expand(coeff(Gser,z^n))) od:seq(seq(coeff(P[n],t^k),k=1..n+1),n=0..9); # Emeric Deutsch, Apr 01 2005
  • Mathematica
    g = t/Fold[1-((t+#2)*z)/#1&, 1, Range[12, 1, -1]]; T[n_, k_] := SeriesCoefficient[g, {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
  • PARI
    A053979_ser(N,t='t) = {
      my(x='x+O('x^N), y0=1, y1=0, n=1);
      while(n++, y1 = (1 + t*x*y0^2 + 2*x^2*y0')/(1-x);
        if (y1 == y0, break()); y0 = y1); y0;
    };
    concat(apply(p->Vecrev(p), Vec(A053979_ser(10))))
    \\ test: y=A053979_ser(50); 2*x^2*deriv(y,x) == -t*x*y^2 + (1-x)*y - 1
    \\ Gheorghe Coserea, May 31 2017
    
  • PARI
    A053979_seq(N) = {
      my(t='t, R=vector(N), S=vector(N)); R[1]=S[1]=t;
      for (n=2, N,
        R[n] = t*subst(S[n-1],t,t+1);
        S[n] = R[n] + sum(k=1, n-1, R[k]*S[n-k]));
      apply(p->Vecrev(p), R/t);
    };
    concat(A053979_seq(10))
    \\ test: y=t*Ser(apply(p->Polrev(p,'t), A053979_seq(50)),'x); y == t + x*y^2 + x*y + 2*x^2*deriv(y,x) && y == t + x*y*subst(y,t,t+1) \\ Riccati eq && Dyck eq
    \\ Gheorghe Coserea, May 31 2017

Formula

G.f.: t/(1-(t+1)z/(1-(t+2)z/(1-(t+3)z/(1-(t+4)z/(1-(t+5)z/(1-... (Eq. (5) in the Arques-Beraud reference). - Emeric Deutsch, Apr 01 2005
Sum_{k = 0..n} (-1)^k*2^(n-k)*T(n,k) = A128709(n). Sum_{k = 0..n} T(n,k) = A000698(n+1). - Philippe Deléham, Mar 24 2007
From Peter Bala, Dec 22 2011: (Start)
The o.g.f. in the form G(x,t) = x/(1 - (t+1)*x^2/(1 - (t+2)*x^2/(1 - (t+3)*x^2/(1 - (t+4)*x^2/(1 - ... ))))) = x + (1+t)*x^3 + (3+5*t+2*t^2)*x^5 + ... satisfies the Riccati equation (1 - t*x*G)*G = x + x^3*dG/dx. The cases t = 0, t = 1 and t = 2 give A001147, A000698 and A167872, respectively. The cases t = -2, t = -3 and t = -4 give rational generating functions for aerated and signed versions of A000012, A025192 and A084120, respectively.
The identity G(x,1+t) = 1/(1+t)(1/x-1/G(x,t)) provided t <> -1 allows us to express G(x,n), n = 1,2,..., in terms of G(x,0), a generating function for the double factorial numbers.
Writing G(x,t) = Sum_{n >= 1} R(n,t)*x^(2*n-1), the row generating polynomials R(n,t) satisfy the recurrence R(n+1,t) = (2*n-1)*R(n,t) + t*sum {k = 1..n} R(k,t)*R(n+1-k,t) with initial condition R(1,t) = 1.
G(x,t-1) = x + t*x^3 + (t+2*t^2)*x^5 + (3*t+7*t^2+5*t^3)*x^7 + ... is an o.g.f. for A127160.
The function b(x,t) = - t*G(1/x,t) satisfies the partial differential equation d/dx(b(x,t)) = -(t + (x + b(x,t))*b(x,t)). Hence the differential operator (D^2 + x*D + t), where D = d/dx, factorizes as (D - a(x,t))*(D - b(x,t)), where a(x,t) = -(x + b(x,t)). In the particular case t = -n, a negative integer, the functions a(x,-n) and b(x,-n) become rational functions of x expressible as the ratio of Hermite polynomials.
(End)

Extensions

More terms from Emeric Deutsch, Apr 01 2005

A292186 Number of rooted unlabeled connected four-regular maps on a compact closed oriented surface with n vertices (and thus 2*n edges), with a(0) = 1.

Original entry on oeis.org

1, 3, 24, 297, 4896, 100278, 2450304, 69533397, 2247492096, 81528066378, 3280382613504, 145009234904922, 6986546222800896, 364418301804218028, 20459842995693256704, 1230262900677124568397, 78884016707711348637696, 5372823210133041283250178, 387394283866652086938107904
Offset: 0

Views

Author

Sasha Kolpakov, Sep 11 2017

Keywords

Comments

Equivalently, the number of rooted quadrangulations of oriented surfaces with n quadrangles (and thus 2*n edges) for n > 0.
Equivalently, the number of pairs (alpha,sigma) of permutations on a pointed set of size 4*n up to simultaneous conjugacy such that alpha (resp. sigma) has only cycles of length 2 (resp. 4) and the subgroup generated by them acts transitively, for n > 0.
This is also the S(4, -6, 1) sequence of Martin and Kearney, if the offset is set to 1.
This sequence is not D-finite (or holonomic).

Crossrefs

Column 4 of A380622.

Programs

  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return 1 if n == 0 else (4*n - 2)*a(n - 1) + sum([a(k)*a(n - k - 1) for k in range(n)])
    [a(n) for n in range(21)]

Formula

a(0)=1, a(1)=3, a(n) = 4*n*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1) for n>=2.
From Peter Bala, Aug 22 2023: (Start)
The o.g.f. A(x) = 1 + 3*x + 24*x^2 + 297*x^3 + 4896*x^4 + 100278*x^5 + 2450304*x^6 + ... satisfies the Riccati differential equation (4*x^2)*A'(x) = -1 + (1 - 2*x)*A(x) - x*A(x)^2 with A(0) = 1.
O.g.f. as a continued fraction of Stieltjes type: 1/(1 - 3*x/(1 - 5*x/(1 - 7*x/(1 - 9*x/(1 - ... - (2*n+1)*x/(1 - ... )))))).
Also A(x) = 1/(1 + 2*x - 5*x/(1 - 3*x/(1 - 9*x/(1 - 7*x/(1 - ... - (4*n+1)*x/(1 - (4*n-1)*x/(1 - ... ))))))). (End)

Extensions

Edited by Andrey Zabolotskiy, Jan 23 2025

A094344 Triangle T(n,k), 0<= k <= n, read by rows; given by [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ...] DELTA [1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 4, 1, 0, 6, 18, 13, 1, 0, 24, 96, 119, 46, 1, 0, 120, 600, 1059, 777, 199, 1, 0, 720, 4320, 9890, 10760, 5536, 1072, 1, 0, 5040, 35280, 99158, 142990, 111316, 44228, 6985, 1, 0, 40320, 322560, 1073692, 1926312, 2009578, 1217352, 395865, 53218, 1
Offset: 0

Views

Author

Philippe Deléham, Jun 02 2004

Keywords

Examples

			Triangle begins:
  1;
  0,  1;
  0,  1,  1;
  0,  2,  4,   1;
  0,  6, 18,  13,  1;
  0, 24, 96, 119, 46, 1;
  ...
		

Crossrefs

Row sums: A094664.
Columns: A000007, A000142, A001563.
Diagonals: A000012, A014145.

Formula

Sum_{k=0..n} T(n,k)*3^(n-k) = A128709(n). - Philippe Deléham, Mar 27 2007

Extensions

Row 9 completed by Michel Marcus, Jun 20 2023

A168440 a(n) = Product_{k=0..n} ((4*k+1)*(4*k+3))^(n-k).

Original entry on oeis.org

1, 3, 315, 3274425, 6637341335625, 4345660353133020796875, 1374246178519871776155872382421875, 293343904920011883594420118662644304008056640625
Offset: 0

Views

Author

Paul Barry, Nov 25 2009

Keywords

Comments

Hankel transform of A128709.

Crossrefs

Cf. A128709.

Programs

  • Mathematica
    Table[Product[((4*k+1)*(4*k+3))^(n-k), {k,0,n}], {n,0,10}] (* Vaclav Kotesovec, Jan 23 2024 *)

Formula

a(n) ~ A^(1/4) * sqrt(Gamma(1/4)) * 2^(2*n^2 + 5*n/2 + 1/8) * n^(n^2 + n + 7/48) / (Pi^(1/4) * exp(3*n^2/2 + n + 1/48)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 23 2024

A291261 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 3^k*x/(1 - 5^k*x/(1 - 7^k*x/(1 - 9^k*x/(1 - ...)))))).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 5, 1, 1, 10, 31, 14, 1, 1, 28, 325, 364, 42, 1, 1, 82, 4159, 22150, 5746, 132, 1, 1, 244, 57349, 1790452, 2586250, 113944, 429, 1, 1, 730, 818911, 162045118, 1691509906, 461242900, 2719291, 1430, 1, 1, 2188, 11923525, 15520964284, 1289803048426, 2978600051368, 116651486125, 75843724, 4862
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 21 2017

Keywords

Examples

			Square array begins:
   1,     1,        1,           1,              1,                 1,  ...
   1,     1,        1,           1,              1,                 1,  ...
   2,     4,       10,          28,             82,               244,  ...
   5,    31,      325,        4159,          57349,            818911,  ...
  14,   364,    22150,     1790452,      162045118,       15520964284,  ...
  42,  5746,  2586250,  1691509906,  1289803048426,  1063421637466546,  ...
		

Crossrefs

Columns k=0..2 give A000108, A128709, A127823.
Main diagonal gives A291332.
Cf. A034472 (row 2), A290569, A291260.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-(2 i - 1)^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten

Formula

G.f. of column k: 1/(1 - x/(1 - 3^k*x/(1 - 5^k*x/(1 - 7^k*x/(1 - 9^k*x/(1 - ...)))))), a continued fraction.

A127160 Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,2,3,4,5,6,...] DELTA [1,1,1,1,1,1,1,1,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 3, 7, 5, 0, 15, 39, 37, 14, 0, 105, 296, 326, 176, 42, 0, 945, 2838, 3458, 2228, 794, 132, 0, 10395, 32859, 43191, 31235, 13553, 3473, 429, 0, 135135, 445767, 622259, 489899, 241225, 76417, 14893, 1430
Offset: 0

Views

Author

Philippe Deléham, Mar 25 2007

Keywords

Comments

This triangle enumerates fixed-point-free involutions in S_n by number of left-to-right maxima. For instance there are 15 fixed point free involutions on 6 elements: 3 have 1 left to right maxima, namely (1,6)(2,3)(4,5), (1,6)(2,4)(3,5) and (3,6)(2,5)(3,4); 7 have 2 left-to right maxima and 5 have 3 left to right maxima. - Robert Cori (rcori(AT)cs.brown.edu), Apr 25 2008
A053979*A130595 as infinite lower triangular matrices. - Philippe Deléham, Jan 06 2012

Examples

			Triangle begins:
1;
0, 1;
0, 1, 2;
0, 3, 7, 5;
0, 15, 39, 37, 14;
0, 105, 296, 326, 176, 42;
0, 945, 2838, 3458, 2228, 794, 132;
0, 10395, 32859, 43191, 31235, 13553, 3473, 429;
0, 135135, 445767, 622259, 489899, 241225, 76417, 14893, 1430;
		

Crossrefs

Programs

  • Mathematica
    nmax = 8;
    DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x r[[k + 1]] + y s[[k + 1]]; p[0, ] = 1; p[, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k] p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[ p[n, 0], x^(n - k) y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]];
    DELTA[Range[0, nmax], Table[1, {nmax+1}], nmax] // Flatten (* Jean-François Alcover, Nov 12 2019 *)

Formula

Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000108(n), A001147(n), A128709(n) for x = -1,0,1,2 respectively.
From Peter Bala, Dec 22 2011: (Start)
The o.g.f. in the form G(x,t) = x/(1 - t*x^2/(1 - (t+1)*x^2/(1 - (t+2)*x^2/(1 - (t+3)*x^2/(1 - ... ))))) = x + t*x^3 + (t+2*t^2)*x^5 + ... satisfies the Riccati differential equation (1 - (t-1)*x*G)*G = x + x^3*dG/dx. Writing G(x,t) = sum {n = 1..inf} R(n,t)*x^(2*n-1), the row generating polynomials R(n,t) satisfy the recurrence R(n+1,t) = (2*n-1)*R(n,t) + (t-1)*sum {k = 1..n} R(k,t)*R(n+1-k,t) with initial condition R(1,t) = 1.
G(x,t+1) = x + (1+t)*x^3 + (3+5*t+2*t^2)*x^5 + ... is an o.g.f. for A053979.
(End)

Extensions

Corrected and extended by Peter Bala, Dec 20 2011

A178104 Inverse of coefficient array of orthogonal polynomials P(n,x)=x*P(n-1,x)-(2n-3)*P(n-2,x), P(0,x)=1,P(1,x)=x.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 4, 0, 9, 0, 1, 0, 31, 0, 16, 0, 1, 31, 0, 111, 0, 25, 0, 1, 0, 364, 0, 286, 0, 36, 0, 1, 364, 0, 1794, 0, 610, 0, 49, 0, 1, 0, 5746, 0, 6064, 0, 1149, 0, 64, 0, 1, 5746, 0, 36066, 0, 16405, 0, 1981, 0, 81, 0, 1, 0, 113944, 0, 150901, 0, 38196, 0, 3196
Offset: 0

Views

Author

Paul Barry, May 20 2010

Keywords

Comments

Inverse is A178103. First row is aerated version of A128709.

Examples

			Triangle begins
1,
0, 1,
1, 0, 1,
0, 4, 0, 1,
4, 0, 9, 0, 1,
0, 31, 0, 16, 0, 1,
31, 0, 111, 0, 25, 0, 1,
0, 364, 0, 286, 0, 36, 0, 1,
364, 0, 1794, 0, 610, 0, 49, 0, 1
Production matrix is
0, 1,
1, 0, 1,
0, 3, 0, 1,
0, 0, 5, 0, 1,
0, 0, 0, 7, 0, 1,
0, 0, 0, 0, 9, 0, 1,
0, 0, 0, 0, 0, 11, 0, 1,
0, 0, 0, 0, 0, 0, 13, 0, 1,
0, 0, 0, 0, 0, 0, 0, 15, 0, 1
		
Showing 1-7 of 7 results.