cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A094664 Row sums of triangle A094344.

Original entry on oeis.org

1, 1, 2, 7, 38, 286, 2756, 32299, 444998, 7038898, 125620652, 2495811814, 54618201884, 1305184303996, 33812846036552, 943878836768947, 28242424937855558, 901709392642750186, 30597227032818965276, 1099566630423067201234, 41718229482624755005748
Offset: 0

Views

Author

Philippe Deléham, Jun 06 2004

Keywords

Examples

			a(3) = 7, a(4) = 38, since top row of M^3 = (7, 7, 9, 15) with 38 = (7 + 7 + 9 + 15).
		

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[(2*Range[nmax + 1] - 2*Floor[Range[nmax + 1]/2] - 1)*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n)); for(k=0, n, CF=1/(1-(2*n-2*k+1)*x/(1-(2*n-2*k+1)*x*CF))); polcoeff(CF, n, x)} /* Paul D. Hanna, Sep 17 2011 */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*(2*A-A^2)+2*x^2*A'+x*O(x^n));polcoeff(A,n)} \\ Paul D. Hanna, Mar 09 2013

Formula

a(n) = Sum_{k = 0..n} A094344(n, k).
From Gary W. Adamson, Jul 26 2011: (Start)
a(n) = upper left term in M^n, a(n+1) = sum of top row terms in M^n; M = the following infinite square production matrix:
1, 1, 0, 0, 0, ...
1, 1, 3, 0, 0, ...
1, 1, 1, 5, 0, ...
1, 1, 1, 1, 7, ...
... (End)
G.f.: 1/(1 - x/(1 - x/(1 - 3*x/(1 - 3*x/(1 - 5*x/(1 - 5*x/(1 - 7*x/(1 - 7*x/(1-...))))))))) (continued fraction). - Paul D. Hanna, Sep 17 2011
G.f. A(x) satisfies A(x) = 1 + x*(2*A(x)-A(x)^2) + 2*x^2*A'(x). - Paul D. Hanna, Mar 09 2013
From Sergei N. Gladkovskii, Oct 15 2012 - Aug 14 2013: (Start)
Continued fractions:
G.f.: 1/U(0) where U(k) = 1 - x*(2*k+1)/(1 - x*(2*k+1)/U(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+3)/Q(k+1) ).
G.f.: Q(0)/x - 1/x, where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+1)/Q(k+1)).
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(4*k+2)/(x*(4*k+2)-1+ x*(4*k+2)/G(k+1))).
G.f.: G(0)/2/x - 1/x + 2, where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - 1 + 2*x*(2*k-1)/G(k+1))).
G.f.: G(0), where G(k) = 1-x*(2*k+1)/(x*(2*k+1)-1/(1-x*(2*k+1)/(x*(2*k+1)- 1/G(k+1)))).
G.f.: 2 - 1/x - G(0)/x, where G(k) = 2*x - 2*x*k - 1 - x*(2*k-1)/G(k+1).
(End)
a(n) ~ 2^n * (n-1)! / Pi. - Vaclav Kotesovec, Sep 05 2017
Conjecture: a(n) = R(n-1, 0) for n > 0 with a(0) = 1 where R(n, q) = (2*q + 1)*R(n-1, q+1) + Sum_{j=0..q} R(n-1, j) for n > 0, q >= 0 with R(0, q) = 1 for q >= 0. - Mikhail Kurkov, Jun 19 2023

A128709 O.g.f.: A(x) = 1/(1-1*x/(1-3*x/(1-5*x/(1-7*x/(1-...-(2n-1)*x/(1-...)))))) (continued fraction).

Original entry on oeis.org

1, 1, 4, 31, 364, 5746, 113944, 2719291, 75843724, 2420160286, 86941080904, 3471911602006, 152562875644984, 7315129181611876, 380045172886143664, 21266347877729314771, 1275148311699896290444, 81563275661324271278566
Offset: 0

Views

Author

Paul D. Hanna, Mar 23 2007

Keywords

Comments

Hankel transform is A168440. - Paul Barry, Nov 25 2009

Examples

			G.f.: A(x) = 1 + x + 4x^2 + 31x^3 + 364x^4 + 5746x^5 + ...;
A(x) = 1/(1 - x*(1 + 3x + 24x^2 + 297x^3 + 4896x^4 + ...));
A(x) = 1/(1 - x/(1 - 3x*(1 + 5x + 60x^2 + 1035x^3 + 22500x^4 + ...)));
A(x) = 1/(1 - x/(1 - 3x/(1 - 5x*(1 + 7x + 112x^2 + 2485x^3 + ...)))).
		

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[(2*Range[nmax + 1]-1)*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 24 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n));for(k=0,n,CF=1/(1-(2*n-2*k+1)*x*CF));polcoeff(CF,n,x)}

Formula

a(n) = Sum_{k=0..n} (-1)^k*2^(n-k)*A053979(n,k). - Philippe Deléham, Mar 24 2007
a(n) = Sum_{k=0..n} A094344(n,k)*3^(n-k). - Philippe Deléham, Mar 27 2007
G.f.: 1/(1-x-3x^2/(1-8x-35x^2/(1-16x-99x^2/(1-24x-195x^2/(1-32x-323x^2/(1-... (continued fraction). - Paul Barry, Nov 25 2009
a(n) = top left term of M^n, n > 0; M = the infinite square production matrix:
1, 3, 0, 0, ...
1, 3, 5, 0, ...
1, 3, 5, 7, ...
...
Also, a(n+1) = sum of top row terms of M^n. Example: top row of M^3 = (31, 93, 135, 105, 0, 0, 0, ...), where a(3) = 31 and a(4) = 364 = (31 + 93 + 135 + 105). - Gary W. Adamson, Jul 14 2011
G.f.: 1/T(0) where T(k) = 1 - x*(4*k+1)/(1 - x*(4*k+3)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: G(0), where G(k) = 1 - x*(2*k+1)/(x*(2*k+1) - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 05 2013
a(n) ~ 2^(2*n - 1/2) * (n-1)! / Pi. - Vaclav Kotesovec, Aug 24 2017
Showing 1-2 of 2 results.