cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005411 Number of non-vanishing Feynman diagrams of order 2n for the electron or the photon propagators in quantum electrodynamics.

Original entry on oeis.org

1, 1, 4, 25, 208, 2146, 26368, 375733, 6092032, 110769550, 2232792064, 49426061818, 1192151302144, 31123028996164, 874428204384256, 26308967412122125, 843984969276915712, 28757604639850111894, 1037239628039528906752, 39481325230750749160462
Offset: 0

Views

Author

Keywords

Comments

Cvitanovic et al. paper relates this sequence to A000698 and A005413. - Robert Munafo, Jan 24 2010
(x + 4x^2 + 25x^3 + 208x^4 + ...) = (x + 2x^2 + 7x^3 + 38x^4 + ...) * 1/(1 + x + 2x^2 + 7x^3 + 38x^4 + ...); where A094664 = (1, 1, 2, 7, 38, 286, ...). - Gary W. Adamson, Nov 16 2011.
The Martin and Kearney article has S(2,-4,1) = [1,1,4,25,...] where u_1 = u_2 = 1, u_3 = 4, u_4 =25, etc. This is almost the same as this sequence. - Michael Somos, Feb 27 2014
From Robert Coquereaux, Sep 05 2014: (Start)
Evaluation of quantum electrodynamics functional integrals in dimension 0 become usual Lebesgue integrals, their Taylor expansion around g=0 at order n give the number of Feynman diagrams.
These are graphs with two kinds of edges: a (non-oriented), f (oriented), and only one kind of vertex: aff.
Electron propagator: all the diagrams with two external edges of type f.
Photon propagator: all the diagrams with two external edges of type a.
The exponent n of g^n gives the number of vertices.
Diagrams containing loops of type f with an odd number of vertices are set to 0 (vanishing diagrams).
The coefficients of the series S(g)=Sum a(n) g^(2n) give the number of non-vanishing Feynman diagrams for the electron (or the photon) propagator.
S(g) is obtained as < 1/(1-g^2 a^2) > for the measure (E^(-(a^2/2)))/sqrt[1-g^2 a^2]da, assuming g^2 < 0, hence a formula for S(g) in terms of modified Bessel functions (setting x=g^2 gives the G.f. below).
(End)
Sum over all Dyck paths of semilength n of products over all peaks p of x_p/y_p, where x_p and y_p are the coordinates of peak p. a(3) = 3/3 +2/2*5/1 +1/1*4/2 +2/2*4/2 +1/1*3/1*5/1 = 25. - Alois P. Heinz, May 21 2015
From Sasha Kolpakov, Dec 11 2017: (Start)
Number of free index 2n subgroups in the free product Z_2*Z_2*Z_2.
Number of oriented rooted pavings (after Arques & Koch, Spehner, Lienhardt) with 2n darts.
(End)

Examples

			G.f. = 1 + x + 4*x^2 + 25*x^3 + 208*x^4 + 2146*x^5 + 26368*x^6 + 375733*x^7 + ... [Deleted g.f. restored by _N. J. A. Sloane_, Jan 30 2016]
		

References

  • C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x/y, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 21 2015
  • Mathematica
    a[n_] := Module[{A}, A[1] = 1; A[k_] := A[k] = (2*k-4)*A[k-1]+Sum[A[j]*A[k-j], {j, 1, k-1}]; A[n]]; Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Feb 27 2014, after Michael Somos *)
    a[ n_] := Module[{m = n + 1, u}, If[ n < 2, Boole[n >= 0], u = Range[m]; Do[ u[[k]] = (2 k - 4) u[[k - 1]] + Sum[ u[[j]] u[[k - j]], {j, k - 1}], {k, 2, m}]; u[[m]]]]; (* Michael Somos, Feb 27 2014 *)
    a[n_]:=SeriesCoefficient[(1-BesselK[1,-(1/(4 g^2))]/BesselK[0,-(1/(4 g^2))])/(2 g^2),{g,0,2*n}]; (* Robert Coquereaux, Sep 05 2014 *)
  • PARI
    {a(n) = my(A); if( n<1, n==0, n++; A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 4) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 24 2011 */

Formula

From Peter Bala, Mar 07 2011: (Start)
Given the o.g.f. A(x), the function F(x) := A(x^2) satisfies the differential equation F(x) = 1 + x^3*d/dx(F(x)) + x^2*F(x)^2 (equation 3.53, P. Cvitanovic et al.).
Conjectural o.g.f. A(x) as a continued fraction:
1 + x/(1 - 4*x - 3^2*x^2/(1 - 8*x - 5^2*x^2/(1 - 12*x - 7^2*x^2/(1 - 16*x - ...)))).
Asymptotics: a(n) ~ 1/Pi*2^(n+1)*n!*(1 - 1/(2*n) - 3/(8*n^2)). (End)
Given u(1) = 1, u(n) = (2*n - 4) * u(n-1) + Sum_{k=1..n-1} u(k) * u(n-k) when n>1, then a(n) = u(n+1) if n>0. - Michael Somos, Jul 24 2011
G.f.: 1/Q(0) where Q(k) = 1 - x*(2*k+1)/(1 - x*(2*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: 1/x^2 - 1/x - Q(0)/x^2, where Q(k) = 1 - x*(2*k+1)/(1 - x*(2*k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
G.f.: 1/x^2 - 1/x - G(0)/(2*x^2), where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - 1 + 2*x*(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013
G.f.: W(0)/x - 1/x, where W(k) = 1 - x*(2*k+1)/( x*(2*k+1) - 1/(1 - x*(2*k+3)/( x*(2*k+3) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
G.f.: G(0)/x -1/x, where G(k) = 1 - x*(2*k+1)/(x - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 21 2014
G.f.: 1/(2*x) - BesselK(1,-1/(4*x))/(2*x*BesselK(0,-1/(4*x))) where BesselK[p,z] denotes the modified Bessel function of the second kind (order p, argument z). This is a small improvement of a result obtained in 1980 book "Quantum Field Theory". - Robert Coquereaux, Sep 05 2014
Asymptotics: a(n) ~ 2*(2/Pi)^(1/2)*(2/e)^n*n^(n+1/2), cf. Ciobanu and Kolpakov in Links. - Sasha Kolpakov, Dec 11 2017
From Peter Bala, Jun 27 2022: (Start)
O.g.f. as a continued fraction of Stieltjes type: A(x) = 1/(1 - x/(1 - 3*x/(1 - 3*x/(1 - 5*x/(1 - 5*x/(1 - 7*x/(1 - 7*x/(1 - ...)))))))) follows by applying the result of Stokes to the Riccati differential equation 2*x^2*A'(x) = -1 + A(x) - x*A^2(x).
The even part of the continued fraction gives A(x) = 1/(1 - x - 3*x^2/(1 - 6*x - 15*x^2/(1 - 10*x - 35*x^2/(1 - 14*x - 63*x^2/(1 - 18*x - ... - (4*n^2-1)*x^2/(1 - (4*n+2)*x -...)))))), a continued fraction of Jacobi type (a J-fraction). (End)

Extensions

Name corrected by Charles R Greathouse IV, Jan 24 2014
Name clarified by Robert Coquereaux, Sep 05 2014
a(0)=1 prepended, programs and formulas edited by Alois P. Heinz, Jun 22 2015

A145879 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having exactly k entries that are midpoints of 321 patterns (0 <= k <= n-2 for n >= 2; k=0 for n=1).

Original entry on oeis.org

1, 2, 5, 1, 14, 8, 2, 42, 46, 26, 6, 132, 232, 220, 112, 24, 429, 1093, 1527, 1275, 596, 120, 1430, 4944, 9436, 11384, 8638, 3768, 720, 4862, 21778, 54004, 87556, 95126, 66938, 27576, 5040, 16796, 94184, 292704, 608064, 880828, 882648, 584008, 229248
Offset: 1

Views

Author

Emeric Deutsch, Oct 30 2008

Keywords

Comments

In a permutation p of {1,2,...,n}, the entry p(i) is the midpoint of a 321 pattern (i.e., of a decreasing subsequence of length 3) if and only if L(i)R(i) > 0, where L (R) is the left (right) inversion vector (table) of p. We do have R(i)+i = p(i) + L(i) for each i=1,2,...,n. (The Maple program makes use of these facts.)
Row n has n-1 entries (n>=2).
Row sums are the factorials (A000142).
Subtriangle of triangle given by (1, 1, 1, 1, 1, 1, 1, 1, ...) DELTA (0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 26 2011

Examples

			T(4,1) = 8 because we have 143'2, 413'2, 43'12, 42'13, 243'1, 32'14, 32'41, 342'1 (the midpoints of 321 patterns are marked).
Triangle starts:
     1
     2
     5    1
    14    8    2
    42   46   26     6
   132  232  220   112   24
   429 1093 1527  1275  596  120
  1430 4944 9436 11384 8638 3768 720
  ...
By the way, the triangle (1, 1, 1, 1, 1, 1, 1, ...) DELTA (0, 0, 0, 1, 1, 2, 2, 3, 3, ...) begins:
    1
    1,    0
    2,    0,    0
    5,    1,    0,    0
   14,    8,    2,    0,   0,
   42,   46,   26,    6,   0,   0
  132,  232,  220,  112,  24,   0, 0
  429, 1093, 1527, 1275, 596, 120, 0, 0
  ...
		

Crossrefs

Diagonals give A000142, A000108, A182542, A182543. Cf. A094664, A289428.

Programs

  • Maple
    n:=7: with(combinat): P:=permute(n): f:=proc(k) local c,L,R,i: c:=0: L:= proc (j) local ct,i: ct:=0: for i to j-1 do if P[k][j] < P[k][i] then ct:=ct+1 else end if end do: ct end proc: R:=proc(j) options operator, arrow: P[k][j]+L(j)-j end proc: for i to n do if 0 < L(i) and 0 < R(i) then c:=c+1 else end if end do: c end proc: a:=[seq(f(k),k=1..factorial(n))]: for h from 0 to n-2 do c[h]:=0: for m to factorial(n) do if a[m]=h then c[h]:=c[h]+1 else end if end do end do: seq(c[h],h=0..n-2); # yields row m of the triangle, where m>=2 is the value assigned to n at the beginning of the program
  • Mathematica
    lg = 10; S1 = Array[1&, lg]; S2 = Table[{n, n}, {n, 0, lg/2 // Ceiling}] // Flatten;
    DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x*r[[k+1]] + y*s[[k+1]]; p[0, ] = 1; p[, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k]*p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n-k)*y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]];
    DELTA[S1, S2, lg] // Rest // Flatten // DeleteCases[#, 0]& (* Jean-François Alcover, Jul 13 2017, after Philippe Deléham *)

Formula

T(n,0) = A000108(n) (the Catalan numbers).
T(n,n-2) = (n-2)! for n>=2, because we have the permutations nq1, where q is any permutation of {2,3,...,n-1}.
From Peter Bala, Dec 25 2019: (Start)
The following formulas are conjectural and assume different offsets:
Recurrence for row polynomials: R(n,t) = n*t*R(n-1,t) + (1 - t)*Sum_{k = 1..n} R(k-1,t)*R(n-k,t) with R(0,t) = 1.
O.g.f. as a continued fraction: A(x,t) = 1/(1 - x/(1 - x/(1 - (1 + t)*x/( 1 - (1 + t)*x/(1 - (1 + 2*t)*x/(1 - (1 + 2*t)*x/(1 - ... ))))))) = 1 + x + 2*x^2 + (5 + t)*x^3 + (14 + 8*t + 2*t^2)*x^4 + ....
The o.g.f. A(x,t) satisfies the Riccati equation x^2*t*dA/dx = -1 + (1 - x*t)*A - x*(1 - t)*A^2.
R(n,2) = A094664(n); R(n,-1) = 2^n. (End)
Conjecture: T(n, k) = [z^k] R_1(n-1, 0) where R_1(n, q) = (q*z + 1)*R_1(n-1, q+1) + Sum_{j=0..q} R_1(n-1, j) for n > 0, q >= 0 with R_1(0, q) = 1 for q >= 0. - Mikhail Kurkov, Dec 26 2023

A094344 Triangle T(n,k), 0<= k <= n, read by rows; given by [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ...] DELTA [1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 4, 1, 0, 6, 18, 13, 1, 0, 24, 96, 119, 46, 1, 0, 120, 600, 1059, 777, 199, 1, 0, 720, 4320, 9890, 10760, 5536, 1072, 1, 0, 5040, 35280, 99158, 142990, 111316, 44228, 6985, 1, 0, 40320, 322560, 1073692, 1926312, 2009578, 1217352, 395865, 53218, 1
Offset: 0

Views

Author

Philippe Deléham, Jun 02 2004

Keywords

Examples

			Triangle begins:
  1;
  0,  1;
  0,  1,  1;
  0,  2,  4,   1;
  0,  6, 18,  13,  1;
  0, 24, 96, 119, 46, 1;
  ...
		

Crossrefs

Row sums: A094664.
Columns: A000007, A000142, A001563.
Diagonals: A000012, A014145.

Formula

Sum_{k=0..n} T(n,k)*3^(n-k) = A128709(n). - Philippe Deléham, Mar 27 2007

Extensions

Row 9 completed by Michel Marcus, Jun 20 2023

A178108 Inverse of coefficient array for orthogonal polynomials P(n,x)=x*P(n-1,x)-(2*floor((n+2)/2)-3)*P(n-2,x), P(0,x)=1,P(1,x)=x.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 5, 0, 1, 0, 7, 0, 8, 0, 1, 7, 0, 31, 0, 13, 0, 1, 0, 38, 0, 70, 0, 18, 0, 1, 38, 0, 248, 0, 160, 0, 25, 0, 1, 0, 286, 0, 728, 0, 285, 0, 32, 0, 1, 286, 0, 2470, 0, 2153, 0, 509, 0, 41, 0, 1, 0, 2756, 0, 8929, 0, 4698, 0, 796, 0, 50, 0, 1, 2756, 0, 29543, 0
Offset: 0

Views

Author

Paul Barry, May 20 2010

Keywords

Comments

Inverses is A178107. First column is aeration of A094664.

Examples

			Triangle begins
1,
0, 1,
1, 0, 1,
0, 2, 0, 1,
2, 0, 5, 0, 1,
0, 7, 0, 8, 0, 1,
7, 0, 31, 0, 13, 0, 1,
0, 38, 0, 70, 0, 18, 0, 1,
38, 0, 248, 0, 160, 0, 25, 0, 1,
0, 286, 0, 728, 0, 285, 0, 32, 0, 1,
286, 0, 2470, 0, 2153, 0, 509, 0, 41, 0, 1
Production matrix is
0, 1,
1, 0, 1,
0, 1, 0, 1,
0, 0, 3, 0, 1,
0, 0, 0, 3, 0, 1,
0, 0, 0, 0, 5, 0, 1,
0, 0, 0, 0, 0, 5, 0, 1,
0, 0, 0, 0, 0, 0, 7, 0, 1,
0, 0, 0, 0, 0, 0, 0, 7, 0, 1
		
Showing 1-4 of 4 results.