cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Sasha Kolpakov

Sasha Kolpakov's wiki page.

Sasha Kolpakov has authored 4 sequences.

A292207 Number of unrooted unlabeled bipartite cubic maps on a compact closed oriented surface with 2*n vertices (and thus 3*n edges).

Original entry on oeis.org

2, 3, 16, 133, 1440, 22076, 401200, 8523946, 206375088, 5611089408, 169259764912, 5610386295418, 202710195084400, 7929759557219228, 333909047017798272, 15059194651009154172, 724232293050284717248
Offset: 1

Author

Sasha Kolpakov, Sep 11 2017

Keywords

Comments

Equivalently, the number of unrooted bicolored triangulations with 2*n triangles (and thus 3*n edges).
Equivalently, the number of pairs of permutations (alpha,sigma) up to simultaneous conjugacy on a set of size 3*n with alpha^3=sigma^3=1, acting transitively and without fixed points.
There is no recurrence relation known for this sequence.

Crossrefs

Unrooted version of A292187.

Extensions

Offset edited by Andrey Zabolotskiy, Jan 17 2025

A292206 Number of unrooted unlabeled connected four-regular maps on a compact closed oriented surface with n vertices (and thus 2*n edges).

Original entry on oeis.org

1, 2, 7, 36, 365, 5250, 103801, 2492164, 70304018, 2265110191, 82013270998, 3295691020635, 145553281837454, 7008046130978980, 365354356543414133, 20504381826687810441, 1232562762503125498772, 79012106044626365750974, 5380476164948914549410335, 387882486153123498708054879
Offset: 0

Author

Sasha Kolpakov, Sep 11 2017

Keywords

Comments

Equivalently, the number of unrooted quadrangulations of oriented surfaces with n quadrangles (and thus 2*n edges).
Equivalently, the number of pairs (alpha,sigma) of permutations on a set of size 4*n up to simultaneous conjugacy such that alpha (resp. sigma) has only cycles of length 2 (resp. 4) and the subgroup generated by them acts transitively.

Examples

			For n = 1, a(n) = 2:
1) the figure-eight map on a sphere (1 vertex, which has degree 4, and 2 edges) <-> its dual map, which is the quadrangulation of a sphere created by a 2-edge path (it bounds 1 region, which has 4 boundary segments, even though they are formed by only 2 different edges) <-> the conjugacy class of the pair of permutations ((12)(34), (1234));
2) the map on a torus consisting of two non-homotopic nontrivial loops (1 vertex, which has degree 4, and 2 edges) <-> its dual map, which is the same map again (it bounds 1 region, which has 4 boundary segments, even though they are formed by only 2 different edges) <-> the conjugacy class of the pair of permutations ((13)(24), (1234)).
		

Crossrefs

Column 4 of A380626.
Unrooted version of A292186.
Cf. A268556.

Formula

Inverse Euler transform of A268556. - Andrew Howroyd, Jan 29 2025

Extensions

Edited by Andrey Zabolotskiy, Jan 17 2025
a(0)=1 prepended and a(18) onwards from Andrew Howroyd, Jan 29 2025

A292187 Number of rooted unlabeled bipartite cubic maps on a compact closed oriented surface with 2*n vertices (and thus 3*n edges), with a(0) = 1.

Original entry on oeis.org

1, 2, 12, 112, 1392, 21472, 394752, 8421632, 204525312, 5572091392, 168331164672, 5585571889152, 201973854584832, 7905697598963712, 333049899230625792, 15025907115679875072, 722841343143300759552, 36935846945562562527232, 1997902532753538016346112, 114050521905958855289864192, 6852141240070150728132329472
Offset: 0

Author

Sasha Kolpakov, Sep 11 2017

Keywords

Comments

Equivalently, the number of rooted bicolored triangulations with 2*n triangles (and thus 3*n edges) for n > 0.
Equivalently, the number of pairs of permutations (alpha,sigma) up to simultaneous conjugacy on a pointed set of size 3*n with alpha^3=sigma^3=1, acting transitively and without fixed points, for n > 0.
This is also the S(3, -5, 1) sequence of Martin and Kearney, if the offset is set to 1.
This sequence is not D-finite (or holonomic).

Crossrefs

Programs

  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return 1 if n == 0 else (3*n - 1)*a(n - 1) + sum([a(k)*a(n - k - 1) for k in range(1, n)])
    [a(n) for n in range(21)]

Formula

a(0)=1, a(1)=2, a(n) = 3*n*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1) for n>=2.
From Peter Bala, Sep 01 2023: (Start)
The o.g.f. A(x) = 1 + 2*x + 12*x^2 + 112*x^3 + 1392*x^4 + 21472*x^5 + 394752*x^6 + ... satisfies the Riccati differential equation (3*x^2)*A'(x) = -1 + (1 - x)*A(x) - x*A(x)^2 with A(0) = 1.
O.g.f. as a continued fraction of Stieltjes type: A(x) = 1/(1 - 2*x/(1 - 4*x/(1 - 5*x/(1 - 7*x/(1 - 8*x/(1 - 10*x/(1 - ... ))))))).
Also A(x) = 1/(1 + 2*x - 4*x/(1 - 2*x/(1 - 7*x/(1 - 5*x/(1 - 10*x/(1 - 8*x/(1 - ... ))))))). (End)

Extensions

Edited by Andrey Zabolotskiy, Jan 23 2025

A292186 Number of rooted unlabeled connected four-regular maps on a compact closed oriented surface with n vertices (and thus 2*n edges), with a(0) = 1.

Original entry on oeis.org

1, 3, 24, 297, 4896, 100278, 2450304, 69533397, 2247492096, 81528066378, 3280382613504, 145009234904922, 6986546222800896, 364418301804218028, 20459842995693256704, 1230262900677124568397, 78884016707711348637696, 5372823210133041283250178, 387394283866652086938107904
Offset: 0

Author

Sasha Kolpakov, Sep 11 2017

Keywords

Comments

Equivalently, the number of rooted quadrangulations of oriented surfaces with n quadrangles (and thus 2*n edges) for n > 0.
Equivalently, the number of pairs (alpha,sigma) of permutations on a pointed set of size 4*n up to simultaneous conjugacy such that alpha (resp. sigma) has only cycles of length 2 (resp. 4) and the subgroup generated by them acts transitively, for n > 0.
This is also the S(4, -6, 1) sequence of Martin and Kearney, if the offset is set to 1.
This sequence is not D-finite (or holonomic).

Crossrefs

Column 4 of A380622.

Programs

  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return 1 if n == 0 else (4*n - 2)*a(n - 1) + sum([a(k)*a(n - k - 1) for k in range(n)])
    [a(n) for n in range(21)]

Formula

a(0)=1, a(1)=3, a(n) = 4*n*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1) for n>=2.
From Peter Bala, Aug 22 2023: (Start)
The o.g.f. A(x) = 1 + 3*x + 24*x^2 + 297*x^3 + 4896*x^4 + 100278*x^5 + 2450304*x^6 + ... satisfies the Riccati differential equation (4*x^2)*A'(x) = -1 + (1 - 2*x)*A(x) - x*A(x)^2 with A(0) = 1.
O.g.f. as a continued fraction of Stieltjes type: 1/(1 - 3*x/(1 - 5*x/(1 - 7*x/(1 - 9*x/(1 - ... - (2*n+1)*x/(1 - ... )))))).
Also A(x) = 1/(1 + 2*x - 5*x/(1 - 3*x/(1 - 9*x/(1 - 7*x/(1 - ... - (4*n+1)*x/(1 - (4*n-1)*x/(1 - ... ))))))). (End)

Extensions

Edited by Andrey Zabolotskiy, Jan 23 2025