cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A380622 Array read by antidiagonals: T(n,k) is the number of rooted k-regular combinatorial maps with n vertices, n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 3, 5, 1, 0, 1, 0, 24, 0, 1, 0, 1, 15, 189, 297, 60, 1, 0, 1, 0, 1695, 0, 4896, 0, 1, 0, 1, 105, 19305, 472200, 869400, 100278, 1105, 1, 0, 1, 0, 252000, 0, 242183775, 0, 2450304, 0, 1, 0, 1, 945, 3828825, 2465608950, 103694490900, 198147676875, 16482741030, 69533397, 27120, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2025

Keywords

Comments

The combinatorial maps considered are connected, unlabeled, may have loops and parallel edges and are of any orientable genus.

Examples

			Array begins:
============================================================
n\k | 1 2    3       4      5         6     7          8 ...
----+-------------------------------------------------------
  0 | 1 1    1       1      1         1     1          1 ...
  1 | 0 1    0       3      0        15     0        105 ...
  2 | 1 1    5      24    189      1695 19305     252000 ...
  3 | 0 1    0     297      0    472200     0 2465608950 ...
  4 | 0 1   60    4896 869400 242183775 ...
  5 | 0 1    0  100278      0 ...
  6 | 0 1 1105 2450304 ...
  7 | 0 1    0 ...
  ...
		

Crossrefs

Columns 2..6 are A000012, A062980 (with interspersed zeros), A292186, A380623 (with interspersed zeros), A380624.

Programs

  • PARI
    T(n,k)={my(A=O(x^(n*k+1)), g=serlaplace(serconvol(exp(x^k/k + A), exp(x^2/2 + A)))); polcoef(1 + x*deriv(g)/g, n*k)}

Formula

A380625(n) = Sum_{d|2*n} T(d,2*n/d).

A292187 Number of rooted unlabeled bipartite cubic maps on a compact closed oriented surface with 2*n vertices (and thus 3*n edges), with a(0) = 1.

Original entry on oeis.org

1, 2, 12, 112, 1392, 21472, 394752, 8421632, 204525312, 5572091392, 168331164672, 5585571889152, 201973854584832, 7905697598963712, 333049899230625792, 15025907115679875072, 722841343143300759552, 36935846945562562527232, 1997902532753538016346112, 114050521905958855289864192, 6852141240070150728132329472
Offset: 0

Views

Author

Sasha Kolpakov, Sep 11 2017

Keywords

Comments

Equivalently, the number of rooted bicolored triangulations with 2*n triangles (and thus 3*n edges) for n > 0.
Equivalently, the number of pairs of permutations (alpha,sigma) up to simultaneous conjugacy on a pointed set of size 3*n with alpha^3=sigma^3=1, acting transitively and without fixed points, for n > 0.
This is also the S(3, -5, 1) sequence of Martin and Kearney, if the offset is set to 1.
This sequence is not D-finite (or holonomic).

Crossrefs

Programs

  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return 1 if n == 0 else (3*n - 1)*a(n - 1) + sum([a(k)*a(n - k - 1) for k in range(1, n)])
    [a(n) for n in range(21)]

Formula

a(0)=1, a(1)=2, a(n) = 3*n*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1) for n>=2.
From Peter Bala, Sep 01 2023: (Start)
The o.g.f. A(x) = 1 + 2*x + 12*x^2 + 112*x^3 + 1392*x^4 + 21472*x^5 + 394752*x^6 + ... satisfies the Riccati differential equation (3*x^2)*A'(x) = -1 + (1 - x)*A(x) - x*A(x)^2 with A(0) = 1.
O.g.f. as a continued fraction of Stieltjes type: A(x) = 1/(1 - 2*x/(1 - 4*x/(1 - 5*x/(1 - 7*x/(1 - 8*x/(1 - 10*x/(1 - ... ))))))).
Also A(x) = 1/(1 + 2*x - 4*x/(1 - 2*x/(1 - 7*x/(1 - 5*x/(1 - 10*x/(1 - 8*x/(1 - ... ))))))). (End)

Extensions

Edited by Andrey Zabolotskiy, Jan 23 2025

A172455 The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.

Original entry on oeis.org

1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2010

Keywords

Examples

			G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
		

Crossrefs

Cf. A000079 S(1,1,-1), A000108 S(0,0,1), A000142 S(1,-1,0), A000244 S(2,1,-2), A000351 S(4,1,-4), A000400 S(5,1,-5), A000420 S(6,1,-6), A000698 S(2,-3,1), A001710 S(1,1,0), A001715 S(1,2,0), A001720 S(1,3,0), A001725 S(1,4,0), A001730 S(1,5,0), A003319 S(1,-2,1), A005411 S(2,-4,1), A005412 S(2,-2,1), A006012 S(-1,2,2), A006318 S(0,1,1), A047891 S(0,2,1), A049388 S(1,6,0), A051604 S(3,1,0), A051605 S(3,2,0), A051606 S(3,3,0), A051607 S(3,4,0), A051608 S(3,5,0), A051609 S(3,6,0), A051617 S(4,1,0), A051618 S(4,2,0), A051619 S(4,3,0), A051620 S(4,4,0), A051621 S(4,5,0), A051622 S(4,6,0), A051687 S(5,1,0), A051688 S(5,2,0), A051689 S(5,3,0), A051690 S(5,4,0), A051691 S(5,5,0), A053100 S(6,1,0), A053101 S(6,2,0), A053102 S(6,3,0), A053103 S(6,4,0), A053104 S(7,1,0), A053105 S(7,2,0), A053106 S(7,3,0), A062980 S(6,-8,1), A082298 S(0,3,1), A082301 S(0,4,1), A082302 S(0,5,1), A082305 S(0,6,1), A082366 S(0,7,1), A082367 S(0,8,1), A105523 S(0,-2,1), A107716 S(3,-4,1), A111529 S(1,-3,2), A111530 S(1,-4,3), A111531 S(1,-5,4), A111532 S(1,-6,5), A111533 S(1,-7,6), A111546 S(1,0,1), A111556 S(1,1,1), A143749 S(0,10,1), A146559 S(1,1,-2), A167872 S(2,-3,2), A172450 S(2,0,-1), A172485 S(-1,-2,3), A177354 S(1,2,1), A292186 S(4,-6,1), A292187 S(3, -5, 1).

Programs

  • Mathematica
    a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • PARI
    S(v1, v2, v3, N=16) = {
      my(a = vector(N)); a[1] = 1;
      for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
    };
    S(6,-4,-1)
    \\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
    \\ Gheorghe Coserea, May 12 2017

Formula

a(n) = (6*n - 4) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 24 2011
G.f.: x / (1 - 7*x / (1 - 5*x / (1 - 13*x / (1 - 11*x / (1 - 19*x / (1 - 17*x / ... )))))). - Michael Somos, Jan 03 2013
a(n) = 3/(2*Pi^2)*int((4*x)^((3*n-1)/2)/(Ai'(x)^2+Bi'(x)^2), x=0..inf), where Ai'(x), Bi'(x) are the derivatives of the Airy functions. [Vladimir Reshetnikov, Sep 24 2013]
a(n) ~ 6^n * (n-1)! / (2*Pi) [Martin + Kearney, 2011, p.16]. - Vaclav Kotesovec, Jan 19 2015
6*x^2*y' = y^2 - (2*x-1)*y - x, where y(x) = Sum_{n>=1} a(n)*x^n. - Gheorghe Coserea, May 12 2017
G.f.: x/(1 - 2*x - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... Cf. A062980. - Peter Bala, May 21 2017

A292206 Number of unrooted unlabeled connected four-regular maps on a compact closed oriented surface with n vertices (and thus 2*n edges).

Original entry on oeis.org

1, 2, 7, 36, 365, 5250, 103801, 2492164, 70304018, 2265110191, 82013270998, 3295691020635, 145553281837454, 7008046130978980, 365354356543414133, 20504381826687810441, 1232562762503125498772, 79012106044626365750974, 5380476164948914549410335, 387882486153123498708054879
Offset: 0

Views

Author

Sasha Kolpakov, Sep 11 2017

Keywords

Comments

Equivalently, the number of unrooted quadrangulations of oriented surfaces with n quadrangles (and thus 2*n edges).
Equivalently, the number of pairs (alpha,sigma) of permutations on a set of size 4*n up to simultaneous conjugacy such that alpha (resp. sigma) has only cycles of length 2 (resp. 4) and the subgroup generated by them acts transitively.

Examples

			For n = 1, a(n) = 2:
1) the figure-eight map on a sphere (1 vertex, which has degree 4, and 2 edges) <-> its dual map, which is the quadrangulation of a sphere created by a 2-edge path (it bounds 1 region, which has 4 boundary segments, even though they are formed by only 2 different edges) <-> the conjugacy class of the pair of permutations ((12)(34), (1234));
2) the map on a torus consisting of two non-homotopic nontrivial loops (1 vertex, which has degree 4, and 2 edges) <-> its dual map, which is the same map again (it bounds 1 region, which has 4 boundary segments, even though they are formed by only 2 different edges) <-> the conjugacy class of the pair of permutations ((13)(24), (1234)).
		

Crossrefs

Column 4 of A380626.
Unrooted version of A292186.
Cf. A268556.

Formula

Inverse Euler transform of A268556. - Andrew Howroyd, Jan 29 2025

Extensions

Edited by Andrey Zabolotskiy, Jan 17 2025
a(0)=1 prepended and a(18) onwards from Andrew Howroyd, Jan 29 2025
Showing 1-4 of 4 results.