A182542 Second diagonal of triangle in A145879.
1, 8, 46, 232, 1093, 4944, 21778, 94184, 401930, 1698160, 7119516, 29666704, 123012781, 508019104, 2091005866, 8582372584, 35141476126, 143595498544, 585720020356, 2385430111024, 9701814930466, 39411044641888, 159926316674356, 648348726966672, 2626193752638388
Offset: 3
Keywords
Examples
Dyck 4-paths with nonzero valley heights are: UUUD(2)UDDD, UUUDD(1)UDD, UUD(1)UUDDD, UUD(1)UD(1)UDD, UUD(1)UDD(0)UD, and UD(0)UUD(1)UDD, with valley heights shown in parentheses, giving a(4) = 8. - _David Scambler_, Oct 05 2012
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..200
Crossrefs
Cf. A145879.
Programs
-
Mathematica
a[n_] := 4^(n - 1) - n CatalanNumber[n]; Array[a, 25, 3] (* Peter Luschny, Jun 08 2020 *)
-
Maxima
a(n):=2*sum((4^i*binomial(2*(n-i),n-i-2))/(n-i),i,0,n-1); /* Vladimir Kruchinin, Mar 29 2019 */
Formula
G.f. appears to be (1-2*x-sqrt(1-4*x))^2/(4*x*(1-4*x)). - Mark van Hoeij, Apr 19 2013
a(n) ~ 2^(2*n-2) * (1-4/(sqrt(Pi*n))). - Vaclav Kotesovec, Aug 13 2013
a(n) = 2*Sum_{i=0..n-1} 4^i*C(2*(n-i),n-i-2)/(n-i). - Vladimir Kruchinin, Mar 29 2019
a(n) = 4^(n-1) - C(2*n,n)*n/(n+1). - Vladimir Kruchinin, Jun 08 2020
Extensions
More terms from Alois P. Heinz, May 30 2012
Comments