A054024 Sum of the divisors of n reduced modulo n.
0, 1, 1, 3, 1, 0, 1, 7, 4, 8, 1, 4, 1, 10, 9, 15, 1, 3, 1, 2, 11, 14, 1, 12, 6, 16, 13, 0, 1, 12, 1, 31, 15, 20, 13, 19, 1, 22, 17, 10, 1, 12, 1, 40, 33, 26, 1, 28, 8, 43, 21, 46, 1, 12, 17, 8, 23, 32, 1, 48, 1, 34, 41, 63, 19, 12, 1, 58, 27, 4, 1, 51, 1, 40, 49, 64, 19, 12, 1, 26, 40
Offset: 1
Examples
a(12) = 4 because sigma(12) = 28 and 28 == 4 (mod 12). a(13) = 1 because 13 is prime. a(14) = 10 because sigma(14) = 24 and 24 == 10 (mod 14).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537 (first 1000 terms from T. D. Noe, terms 1001..20000 from Alois P. Heinz).
- Walter Nissen, Abundancy : Some Resources.
Crossrefs
Programs
-
Haskell
a054024 n = mod (a000203 n) n -- Reinhard Zumkeller, Mar 23 2013
-
Maple
with(numtheory): seq(sigma(i) mod i, i=1..100);
-
Mathematica
Table[Mod[DivisorSigma[1, n], n], {n, 80}] (* Alonso del Arte, Mar 30 2014 *)
-
PARI
a(n)=sigma(n)%n \\ Charles R Greathouse IV, Nov 04 2014
Formula
a(n) = sigma(n) mod n.
a(p) = 1 for p prime.
Comments