A054124 Left Fibonacci row-sum array, n >= 0, 0<=k<=n.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 4, 4, 1, 1, 1, 2, 4, 7, 5, 1, 1, 1, 2, 4, 8, 11, 6, 1, 1, 1, 2, 4, 8, 15, 16, 7, 1, 1, 1, 2, 4, 8, 16, 26, 22, 8, 1, 1, 1, 2, 4, 8, 16, 31, 42, 29, 9, 1, 1, 1, 2, 4, 8, 16, 32, 57, 64, 37, 10, 1, 1, 1, 2
Offset: 0
Examples
Rows: 1 1 1 1 1 1 1 1 2 1 1 1 2 3 1 ...
Links
Crossrefs
Programs
-
Haskell
a054124 n k = a054124_tabl !! n !! k a054124_row n = a054124_tabl !! n a054124_tabl = map reverse a054123_tabl -- Reinhard Zumkeller, May 26 2015
-
Mathematica
t[, 0|1] = t[n, n_] = 1; t[n_, k_] := t[n, k] = t[n-1, k-1] + t[n-2, k-1]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 25 2013 *)
-
PARI
A052509(n,k) = sum(m=0, k, binomial(n-k, m)); T(n,k) = if(k==0, 1, A052509(n-1,n-k)) \\ Jianing Song, May 30 2022
Formula
T(n, 0) = T(n, n) = 1 for n >= 0; T(n, 1) = 1 for n >= 1; T(n, k) = T(n-1, k-1) + T(n-2, k-1) for k=2, 3, ..., n-1, n >= 3. [Corrected by Jianing Song, May 30 2022]
G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = (1-x^2*y) / ((1-x)*(1-x*y-x^2*y)). - Jianing Song, May 30 2022
Comments