1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 1, 1, 5, 7, 4, 2, 1, 1, 6, 8, 8, 4, 2, 1, 1, 7, 16, 15, 8, 4, 2, 1, 1, 8, 25, 16, 16, 8, 4, 2, 1, 1, 9, 26, 32, 31, 16, 8, 4, 2, 1, 1, 10, 28, 64, 32, 32, 16, 8, 4, 2, 1, 1, 11, 31, 113, 64, 63, 32, 16, 8, 4, 2, 1, 1, 12, 32, 114, 128, 64, 64, 32, 16, 8, 4, 2, 1
Offset: 0
A387267
Number of dissections of a convex n-gon into quadrilaterals and pentagons by strictly disjoint diagonals.
Original entry on oeis.org
0, 1, 1, 3, 7, 8, 19, 31, 47, 87, 135, 219, 371, 579, 947, 1535, 2423, 3919, 6239, 9891, 15803, 24987, 39563, 62663, 98751, 155815, 245431, 385771, 606467, 951795, 1492323, 2338703, 3660551, 5725951, 8950543, 13978931, 21820235, 34037067, 53059643, 82670167
Offset: 3
A385240
Array read by descending antidiagonals: T(n,k) is the number of k element sets of noncongruent integer sided rectangles that fill an n X n square.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 0, 3, 2, 1, 0, 0, 0, 3, 8, 2, 1, 0, 0, 0, 2, 15, 11, 3, 1, 0, 0, 0, 0, 19, 35, 19, 3, 1, 0, 0, 0, 0, 7, 87, 75, 23, 4, 1, 0, 0, 0, 0, 1, 114, 257, 119, 35, 4, 1, 0, 0, 0, 0, 0, 56, 593, 571, 210, 40, 5, 1, 0
Offset: 1
Array begins:
1 0 0 0 0
1 0 0 0 0
1 1 2 0 0
1 1 3 3 2
1 2 8 15 19
1 2 11 35 87
1 3 19 75 257
1 3 23 119 571
1 4 35 210 1186
1 4 40 289 2033
Cf.
A386296 (3-dimensional version).
A387152
Array read by ascending antidiagonals: A(n, k) = Sum_{j=0..n} binomial(k, j)*|Stirling1(n, j)|.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 2, 3, 3, 1, 0, 6, 7, 6, 4, 1, 0, 24, 23, 16, 10, 5, 1, 0, 120, 98, 57, 30, 15, 6, 1, 0, 720, 514, 257, 115, 50, 21, 7, 1, 0, 5040, 3204, 1407, 546, 205, 77, 28, 8, 1, 0, 40320, 23148, 9076, 3109, 1021, 336, 112, 36, 9, 1
Offset: 0
Array begins:
[0] 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, ...
[2] 0, 1, 3, 6, 10, 15, 21, ...
[3] 0, 2, 7, 16, 30, 50, 77, ...
[4] 0, 6, 23, 57, 115, 205, 336, ...
[5] 0, 24, 98, 257, 546, 1021, 1750, ...
[6] 0, 120, 514, 1407, 3109, 6030, 10696, ...
[7] 0, 720, 3204, 9076, 20695, 41330, 75356, ...
[8] 0, 5040, 23148, 67456, 157865, 323005, 602517, ...
[9] 0, 40320, 190224, 567836, 1358564, 2837549, 5396650, ...
-
A := (n, k) -> add(binomial(k, j)*abs(Stirling1(n, j)), j = 0..n):
seq(seq(A(n-k, k), k = 0..n), n = 0..10);
# Expanding rows or columns:
RowSer := n -> series((1+x)^k*GAMMA(x + n)/GAMMA(x), x, 12):
Trow := n -> k -> coeff(RowSer(n), x, k):
ColSer := n -> series(orthopoly:-L(n, log(1 - x)), x, 12):
Tcol := k -> n -> n! * coeff(ColSer(k), x, n):
seq(lprint(seq(Trow(n)(k), k = 0..7)), n = 0..9);
seq(lprint(seq(Tcol(k)(n), n = 0..7)), k = 0..9);
-
from functools import cache
@cache
def T(n: int, k: int) -> int:
if n == 0: return 1
if k == 0: return 0
return (n - 1) * T(n - 1, k) + T(n, k - 1) - (n - 2) * T(n - 1, k - 1)
for n in range(7): print([T(n, k) for k in range(7)])
A387121
Array read by antidiagonals: T(n,k) is the number of sets of k integer sided cuboids with distinct volumes that fill an n X n X n cube.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 4, 3, 2, 1, 0, 0, 2, 11, 8, 2, 1, 0, 0, 1, 26, 47, 11, 3, 1, 0, 0, 0, 55, 206, 77, 19, 3, 1, 0, 0, 0, 48, 793, 442, 183, 23, 4, 1, 0, 0, 0, 23, 2653, 2451, 1531, 259, 35, 4, 1, 0, 0, 0, 0, 6706, 13022, 12178
Offset: 1
Array begins:
1 0 0 0 0
1 0 0 0 0
1 1 2 4 2
1 1 3 11 26
1 2 8 47 206
1 2 11 77 442
1 3 19 183 1531
1 3 23 259 2661
1 4 35 457 5574
1 4 40 599 8514
...
A386987
For n >= 2, a(n) is the least r >= 1 such that T(n - r) + ... + T(n - 1) = T(n + 1) + ... + T(n + r) where T(i) is A010060(i).
Original entry on oeis.org
2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3
Offset: 2
For n = 6: T(6 - r) + ... + T(5) = T(7) + ... + T(6 + r) is true for the least r = 4 because A010060(2) + A010060(3) + A010060(4) + A010060(5) = A010060(7) + A010060(8) + A010060(9) + A010060(10), thus a(6) = 4.
-
a[n_] := Module[{s = 0, r = 1}, While[r <= n && (r == 1 || s != 0), s += (ThueMorse[n - r] - ThueMorse[n + r]); r++]; r-1]; Array[a, 100, 2] (* Amiram Eldar, Aug 12 2025 *)
A386678
Triangle of numerators for rational convergents to Taylor series of Gamma(x+1).
Original entry on oeis.org
1, 1, 0, 1, -1, 5, 1, -17, 1045, -35801, 1, -181, 104905, -38432557, 15859708705, 1, -5197, 82178809, -864396960373, 9983212589988481, -112929359515545345757, 1, -4129, 101866157, -213193733657, 15527707142596399, -138932602159504972471, 2493923095641600267646643, 1
Offset: 0
Let A(n, k) = A386675(n, k)/A386676(n, k) be the triangle
1;
1, 0;
1, 1/4, -1/4;
1, 17/36, -7/12, 1/9;
1, 181/288, -167/192, 77/288, -5/192;
1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
where each successive rows gives better rational approximations to 1/Gamma(x+1). Using the Cauchy product, one can obtain approximations to Gamma(x+1) with this table. For instance, T(3, 2) = -numerator(A(3, 1) * T(3, 1) + A(3, 2) * T(3, 0)) = -numerator(17/36 * (-17/36) + (- 7/12) * 1) = 1045. Doing this for each row yields the full table
1;
1, 0;
1, -1/4, 5/16;
1, -17/36, 1045/1296, -35801/46656;
1, -181/288, 104905/82944, -38432557/23887872, 15859708705/6879707136;
As an example, row 3 gives Gamma(x+1) ~ 1 - 17/36x + 1045/1296x^2 - 35801/46656x^3.
-
Table[Numerator@CoefficientList[Series[1/Sum[Sum[LaguerreL[i,1](-1)^i StirlingS1[i,k]/i!,{i,0,m}] x^k,{k,0,m}],{x,0,m}],x],{m,0,10}]
A386679
Triangle of denominators for rational convergents to Taylor series of Gamma(x+1).
Original entry on oeis.org
1, 1, 1, 1, 4, 16, 1, 36, 1296, 46656, 1, 288, 82944, 23887872, 6879707136, 1, 7200, 51840000, 373248000000, 2687385600000000, 19349176320000000000, 1, 5400, 58320000, 78732000000, 3401222400000000, 18366600960000000000, 198359290368000000000000, 1, 264600, 140026320000, 9262741068000000, 19607370292742400000000
Offset: 0
Let A(n, k) = A386675(n, k)/A386676(n, k) be the triangle
1;
1, 0;
1, 1/4, -1/4;
1, 17/36, -7/12, 1/9;
1, 181/288, -167/192, 77/288, -5/192;
1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
where each successive rows gives better rational approximations to 1/Gamma(x+1). Using the Cauchy product, one can obtain approximations to Gamma(x+1) with this table. For instance, T(3, 2) = -denominator(A(3, 1) * T(3, 1) + A(3, 2) * T(3, 0)) = -numerator(17/36 * (-17/36) + (- 7/12) * 1) = 1296. Doing this for each row yields the full table:
1;
1, 0;
1, -1/4, 5/16;
1, -17/36, 1045/1296, -35801/46656;
1, -181/288, 104905/82944, -38432557/23887872, 15859708705/6879707136; ...
As an example, row 3 gives Gamma(x+1) ~ 1 - 17/36x + 1045/1296x^2 - 35801/46656x^3.
-
Table[Numerator@CoefficientList[Series[1/Sum[Sum[LaguerreL[i,1](-1)^i StirlingS1[i,k]/i!,{i,0,m}] x^k,{k,0,m}],{x,0,m}],x],{m,0,10}]
A385959
a(0) = 1; a(n) = a(n-1)*(b(n)+1)/(b(n)-1), where b(n) = A385958(n) is the largest prime p such that a(n) is an integer.
Original entry on oeis.org
1, 2, 3, 4, 6, 7, 14, 15, 16, 18, 19, 38, 57, 76, 114, 115, 120, 121, 132, 135, 136, 138, 139, 278, 279, 310, 312, 314, 471, 628, 942, 1099, 2198, 2199, 2932, 4398, 5131, 10262, 10995, 10996, 16494, 19243, 38486, 41235, 41236, 41358, 41471, 41838, 41841, 46490, 55788, 55789, 111578, 167367, 168554, 252831, 252832, 252864
Offset: 0
Comments