cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: , 0|1] = t[n

, 0|1] = t[n's wiki page.

, 0|1] = t[n has authored 6335 sequences. Here are the ten most recent ones:

A386822 Irregular table T(n,k) = Product_{j = 1..k} prime(j)^(n-j+1), n >= 0, k = 1..n.

Original entry on oeis.org

1, 2, 4, 12, 8, 72, 360, 16, 432, 10800, 75600, 32, 2592, 324000, 15876000, 174636000, 64, 15552, 9720000, 3333960000, 403409160000, 5244319080000, 128, 93312, 291600000, 700131600000, 931875159600000, 157486901972400000, 2677277333530800000
Offset: 0

Author

Michael De Vlieger, Aug 31 2025

Keywords

Comments

Proper subset of A025487, in turn a proper subset of A055932.
For n > 1, T(n,n) is in A332785.
For 1 < k < n, T(n,k) is in A286708, where A286708 is the sequence of powerful numbers (i.e., in A001694) that are not prime powers.
For n > 1 and k > 1, T(n,k) is in A126706.

Examples

			Table begins:
  n\k   1      2        3          4           5
  ----------------------------------------------
  0:    1;
  1:    2;
  2:    4,    12;
  3:    8,    72,     360;
  4:   16,   432,   10800,     75600;
  5:   32,  2592,  324000,  15876000,  174636000;
Table of n, a(n) = P(k)^m * Q(k), for n < 12, illustrating prime power factor exponents, where k = omega(a(n)) = A001221(a(n)), P = A002110, and Q = A006939:
                                     Exponents of
 n     a(n)                  k   m   2.3.5.7
---------------------------------------------------
 1       1                           .
 2       2 = P(1)^0 * Q(1)   1   0   1
 3       4 = P(1)^1 * Q(1)   1   1   2
 4      12 = P(2)^0 * Q(2)   2   0   2.1
 5       8 = P(1)^2 * Q(1)   1   2   3
 6      72 = P(2)^1 * Q(2)   2   1   3.2
 7     360 = P(3)^0 * Q(3)   3   0   3.2.1
 8      16 = P(1)^3 * Q(1)   1   3   4
 9     432 = P(2)^2 * Q(2)   2   2   4.3
10   10800 = P(3)^1 * Q(3)   3   1   4.3.2
11   75600 = P(4)^0 * Q(4)   4   0   4.3.2.1
		

Programs

  • Mathematica
    Table[Product[Prime[j]^(n - j + 1), {j, k}], {n, 8}, {k, n}] // Flatten

Formula

T(0,1) = 1 by convention.
T(n,1) = A000079(n) = 2^n.
T(n,n) = A006939(n).

A385674 Triangle read by rows: T(n,n) = 1 and T(n,k) = (T(n-1,k) | T(n-2,k) | ... | T(n-k,k)) + 1, where | is bitwise OR, (0<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 1, 1, 5, 7, 4, 2, 1, 1, 6, 8, 8, 4, 2, 1, 1, 7, 16, 15, 8, 4, 2, 1, 1, 8, 25, 16, 16, 8, 4, 2, 1, 1, 9, 26, 32, 31, 16, 8, 4, 2, 1, 1, 10, 28, 64, 32, 32, 16, 8, 4, 2, 1, 1, 11, 31, 113, 64, 63, 32, 16, 8, 4, 2, 1, 1, 12, 32, 114, 128, 64, 64, 32, 16, 8, 4, 2, 1
Offset: 0

Author

Natalia L. Skirrow, Aug 04 2025

Keywords

Comments

For the purposes of the recurrence, the region of the array above the triangle is filled with 0's.
In the cellular automaton, on binary representations, that starts with s = 2^n-1 on iteration t=0, then each iteration sets s := s XOR (s<<1 AND s<<2 AND ... AND s<
With respect to n, T(n,k) is in Theta(n^k); this corresponds with the k-th cellular automaton growing with width Theta(t^(1/k)).
Rows are not always unimodal! Row 18 (1 < 18 < 104 < 512 > 496 < 1986 < 2048 > 1024 > 512 = 512 > 256 > 128 > 64 > 32 > 16 > 8 > 4 > 2 > 1) is the first exception.

Examples

			Table begins
  n\k| 0  1  2   3   4   5   6   7   8  9 10 11 12 13 14 15
  ---+-----------------------------------------------------
   0 | 1
   1 | 1  1
   2 | 1  2  1
   3 | 1  3  2   1
   4 | 1  4  4   2   1
   5 | 1  5  7   4   2   1
   6 | 1  6  8   8   4   2   1
   7 | 1  7 16  15   8   4   2   1
   8 | 1  8 25  16  16   8   4   2   1
   9 | 1  9 26  32  31  16   8   4   2  1
  10 | 1 10 28  64  32  32  16   8   4  2  1
  11 | 1 11 31 113  64  63  32  16   8  4  2  1
  12 | 1 12 32 114 128  64  64  32  16  8  4  2  1
  13 | 1 13 64 116 256 128 127  64  32 16  8  4  2  1
  14 | 1 14 97 120 481 256 128 128  64 32 16  8  4  2  1
  15 | 1 15 98 127 482 512 256 255 128 64 32 16  8  4  2  1
Binary expansions of the k=2 column:
  . . . . . . . . . . . . 11111111111111111111111
  . . . . . . . . . . . .1 1111111111111111111111
  . . . . . . 11111111111 . . . . . . 11111111111
  . . . . . .1 1111111111 . . . . . .1 1111111111
  . . . 11111 . . . 11111 . . . 11111 . . . 11111
  . . .1 1111 . . .1 1111 . . .1 1111 . . .1 1111
  . .11 . .11 . .11 . .11 . .11 . .11 . .11 . .11
  . 1 1 . 1 1 . 1 1 . 1 1 . 1 1 . 1 1 . 1 1 . 1 1
  .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1
The recurrence emulates binary counting, albeit with k X k 'metabits' in this diagram; the bit being  carried to is filled along the diagonal, followed by a single number in which all metabits are full and the 0th bit is on.
		

Crossrefs

Cf. A338888 (column k=2).

Programs

  • Mathematica
    A351995[n_, k_] := If[n <= 1, n, Total[2^(k*(Flatten[Position[Reverse[IntegerDigits[n, 2]], 1]] - 1))]];
    A385674[n_, k_] := 2*(2^k - 1)*A351995[#[[1]], k] + If[#[[2]] == k, 1, 2*2^(k*IntegerExponent[#[[1]], 2])*(1 + 2^#[[2]] - 2^k)] & [QuotientRemainder[n, k + 1]];
    Table[A385674[n, k], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Sep 04 2025 *)
  • PARI
    lista(nn) = my(m=matrix(nn, nn)); for (n=1, nn, m[n,n] = 1; for (k=1, n-1, for (i=1, k-1, m[n,k] = bitor(m[n,k], m[n-i,k]);); m[n,k]++;);); my(vrows=vector(nn, i, vector(i, k, m[i,k]))); vrows; \\ Michel Marcus, Aug 04 2025
  • Python
    from functools import reduce
    ORsum=lambda l: reduce(int._or_,l,0)
    A351995=lambda n,k: ORsum(map(lambda i: (n>>i&1)<<(i*k),range(n.bit_length()))) if k else n.bit_count()
    T=lambda n,k: 2*~(~0<A351995(d:=n//(k+1),k)+((r:=n%(k+1))==k or (d&-d)**k*2*(1+2**r-2**k))
    #corollary 1:
    T=lambda n,k: T(n-(k+1<<(l:=(d:=n//(k+1)).bit_length()-1)),k)|(~(~0<k else int(n==k)
    bit=lambda n,k,i: (i%k==n%(k+1) if n%(k+1)>i//k&1) if i else n%(k+1)==k #returns i-th bit of T(n,k)
    

Formula

Let d = floor(n/(k+1)) and m = n mod (k+1), then
T(n,k) = 2 * (2^k-1) * A351995(d,k) + b(n,k) where b(n,k) = 1 if n==k (mod k+1), otherwise b(n,k) = 2*2^(k*val_2(d))*(1+2^m-2^k).
Bounds: 2*(n/(k+1))^k <= T(n,k) <= 2*(2^k-1) * ((n-k)/(k+1))^k+1, with upper equality when n is of form 2^(k*i+1) and lower when n is of form (2^k-1)*2^(k*i+1).
T(n,k) = T(n-(k+1)*2^floor(log_2(d)),k) + 2^(k*floor(log_2(d))+1)*(if d is a power of 2 and m != k then 2^m, else 2^k-1).
O.g.f. for k-th column: 2*(2^k-1) * (Sum_{i>=0} 2^(k*i) * x^((k+1)*2^i) / (1+x^((k+1)*2^i))) / (1-x) + x^k / (1-x^(k+1)) + 2 * ((1-2^k) * (1-x^k)/(1-x) + (1-(2*x)^k)/(1-2*x)) * Sum_{i>=0} 2^(k*i) * x^((k+1)*2^i) / (1-x^((k+1)*2^(i+1))).

A387267 Number of dissections of a convex n-gon into quadrilaterals and pentagons by strictly disjoint diagonals.

Original entry on oeis.org

0, 1, 1, 3, 7, 8, 19, 31, 47, 87, 135, 219, 371, 579, 947, 1535, 2423, 3919, 6239, 9891, 15803, 24987, 39563, 62663, 98751, 155815, 245431, 385771, 606467, 951795, 1492323, 2338703, 3660551, 5725951, 8950543, 13978931, 21820235, 34037067, 53059643, 82670167
Offset: 3

Author

Muhammed Sefa Saydam, Aug 24 2025

Keywords

Comments

Strictly disjoint diagonals means that the diagonals are non-crossing and may not share endpoints.

Crossrefs

Formula

a(n) = T(n-3) + Sum_{i=1..n-8} T(i)*( T(n-i-4) + T(n-i-7) ) + Sum_{i=n-7..n-5} T(i)*( 1 + T(n-i-4) ) for n >= 9 and T(n) = A159284(n).

A385240 Array read by descending antidiagonals: T(n,k) is the number of k element sets of noncongruent integer sided rectangles that fill an n X n square.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 0, 3, 2, 1, 0, 0, 0, 3, 8, 2, 1, 0, 0, 0, 2, 15, 11, 3, 1, 0, 0, 0, 0, 19, 35, 19, 3, 1, 0, 0, 0, 0, 7, 87, 75, 23, 4, 1, 0, 0, 0, 0, 1, 114, 257, 119, 35, 4, 1, 0, 0, 0, 0, 0, 56, 593, 571, 210, 40, 5, 1, 0
Offset: 1

Author

Janaka Rodrigo, Aug 26 2025

Keywords

Examples

			Array begins:
  1     0     0     0     0
  1     0     0     0     0
  1     1     2     0     0
  1     1     3     3     2
  1     2     8    15    19
  1     2    11    35    87
  1     3    19    75   257
  1     3    23   119   571
  1     4    35   210  1186
  1     4    40   289  2033
		

Crossrefs

Columns: A000012 (k=1), A004526 (k=2), A381847 (k=3), A387171 (k=4), A387241 (k=5).
Cf. A386296 (3-dimensional version).

Formula

T(n,1) = 1.
T(n,k) = 0 for k > n^2.

Extensions

More terms from Sean A. Irvine, Sep 02 2025

A387152 Array read by ascending antidiagonals: A(n, k) = Sum_{j=0..n} binomial(k, j)*|Stirling1(n, j)|.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 2, 3, 3, 1, 0, 6, 7, 6, 4, 1, 0, 24, 23, 16, 10, 5, 1, 0, 120, 98, 57, 30, 15, 6, 1, 0, 720, 514, 257, 115, 50, 21, 7, 1, 0, 5040, 3204, 1407, 546, 205, 77, 28, 8, 1, 0, 40320, 23148, 9076, 3109, 1021, 336, 112, 36, 9, 1
Offset: 0

Author

Peter Luschny, Aug 27 2025

Keywords

Examples

			Array begins:
  [0]  1,     1,      1,      1,       1,       1,       1, ...
  [1]  0,     1,      2,      3,       4,       5,       6, ...
  [2]  0,     1,      3,      6,      10,      15,      21, ...
  [3]  0,     2,      7,     16,      30,      50,      77, ...
  [4]  0,     6,     23,     57,     115,     205,     336, ...
  [5]  0,    24,     98,    257,     546,    1021,    1750, ...
  [6]  0,   120,    514,   1407,    3109,    6030,   10696, ...
  [7]  0,   720,   3204,   9076,   20695,   41330,   75356, ...
  [8]  0,  5040,  23148,  67456,  157865,  323005,  602517, ...
  [9]  0, 40320, 190224, 567836, 1358564, 2837549, 5396650, ...
		

Crossrefs

Rows: A000012 [0], A001477 [1], A000217 [2], A005581 [3], A387204 [4].
Columns: A000007 [0], A000142 [shifted, 1], A387205 [2].
Contains A271700 in transpose.
Cf. A211210 (main diagonal), A130534.

Programs

  • Maple
    A := (n, k) -> add(binomial(k, j)*abs(Stirling1(n, j)), j = 0..n):
    seq(seq(A(n-k, k), k = 0..n), n = 0..10);
    # Expanding rows or columns:
    RowSer := n -> series((1+x)^k*GAMMA(x + n)/GAMMA(x), x, 12):
    Trow := n -> k -> coeff(RowSer(n), x, k):
    ColSer := n -> series(orthopoly:-L(n, log(1 - x)), x, 12):
    Tcol := k -> n -> n! * coeff(ColSer(k), x, n):
    seq(lprint(seq(Trow(n)(k), k = 0..7)), n = 0..9);
    seq(lprint(seq(Tcol(k)(n), n = 0..7)), k = 0..9);
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if n == 0: return 1
        if k == 0: return 0
        return (n - 1) * T(n - 1, k) + T(n, k - 1) - (n - 2) * T(n - 1, k - 1)
    for n in range(7): print([T(n, k) for k in range(7)])

Formula

T(n, k) = n! * [x^n] Laguerre(k, log(1 - x)).
From Natalia L. Skirrow, Aug 27 2025: (Start)
D-finite with T(n,k) = (n-1)*T(n-1,k)+T(n,k-1)-(n-2)*T(n-1,k-1).
O.g.f.: hypergeom([1,y/(1-y)],[],x)/(1-y).
Row o.g.f.: (y/(1-y))_n/(1-y), where (x)_n is the Pochhammer symbol/rising factorial.
Row o.g.f. is also 0^n + y/(1-y)^(n+1)*Prod_{j=1..n-2}(j+1-j*y).
E.g.f.: 1/((1-y)*(1-x)^(y/(1-y))).
Column e.g.f.: hypergeom([-k],[1],log(1-y)).
T(n,k) = [x^k] (1+x)^k*(x)_n.
(End)

A387121 Array read by antidiagonals: T(n,k) is the number of sets of k integer sided cuboids with distinct volumes that fill an n X n X n cube.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 4, 3, 2, 1, 0, 0, 2, 11, 8, 2, 1, 0, 0, 1, 26, 47, 11, 3, 1, 0, 0, 0, 55, 206, 77, 19, 3, 1, 0, 0, 0, 48, 793, 442, 183, 23, 4, 1, 0, 0, 0, 23, 2653, 2451, 1531, 259, 35, 4, 1, 0, 0, 0, 0, 6706, 13022, 12178
Offset: 1

Author

Janaka Rodrigo, Aug 16 2025

Keywords

Comments

The partitions here must be valid packings of the n X n X n cube, hence T(n,k) is generally less than the number of partitions of n^3 into distinct cuboids (x,y,z) with 1 <= x,y,z <= n and no pair of triplets having equal volume x*y*z.

Examples

			Array begins:
  1     0     0     0     0
  1     0     0     0     0
  1     1     2     4     2
  1     1     3    11    26
  1     2     8    47   206
  1     2    11    77   442
  1     3    19   183  1531
  1     3    23   259  2661
  1     4    35   457  5574
  1     4    40   599  8514
  ...
		

Crossrefs

Columns are A004526 (k=2), A381847 (k=3), A385580 (k=4), A387040 (k=5).

Formula

T(n,1) = 1, T(n,k) = 0 for k > n^3.

Extensions

More terms from Sean A. Irvine, Aug 25 2025

A386987 For n >= 2, a(n) is the least r >= 1 such that T(n - r) + ... + T(n - 1) = T(n + 1) + ... + T(n + r) where T(i) is A010060(i).

Original entry on oeis.org

2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3
Offset: 2

Author

Ctibor O. Zizka, Aug 12 2025

Keywords

Comments

a(n) is from {1, 2, 3, 4}.

Examples

			For n = 6: T(6 - r) + ... + T(5) = T(7) + ... + T(6 + r) is true for the least r = 4  because A010060(2) + A010060(3) + A010060(4) + A010060(5) = A010060(7) + A010060(8) + A010060(9) + A010060(10), thus a(6) = 4.
		

Programs

  • Mathematica
    a[n_] := Module[{s = 0, r = 1}, While[r <= n && (r == 1 || s != 0), s += (ThueMorse[n - r] - ThueMorse[n + r]); r++]; r-1]; Array[a, 100, 2] (* Amiram Eldar, Aug 12 2025 *)

Formula

a(A081706(n) + 1) = 1.
a(2*A079523(n)) = 2.
a(A249034(n))= 2.
a(A225822(n)) = 3.
a(A056196(n)) = 3.
a(2*A131323(n)) = 4.
a(2*A249034(n) - 1) = 4.

A386678 Triangle of numerators for rational convergents to Taylor series of Gamma(x+1).

Original entry on oeis.org

1, 1, 0, 1, -1, 5, 1, -17, 1045, -35801, 1, -181, 104905, -38432557, 15859708705, 1, -5197, 82178809, -864396960373, 9983212589988481, -112929359515545345757, 1, -4129, 101866157, -213193733657, 15527707142596399, -138932602159504972471, 2493923095641600267646643, 1
Offset: 0

Author

David Ulgenes, Aug 09 2025

Keywords

Comments

T(n, k) is the numerator of the k-th coefficient in a degree n polynomial approximation to Gamma(x+1) with rational coefficients.
That is, Gamma(x+1) ~ Sum_{j=0..n} A386678(n, j) * x^j / A386679(n, j) which is exact as lim_{n->oo}.

Examples

			Let A(n, k) = A386675(n, k)/A386676(n, k) be the triangle
  1;
  1, 0;
  1, 1/4, -1/4;
  1, 17/36, -7/12, 1/9;
  1, 181/288, -167/192, 77/288, -5/192;
  1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
  1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
where each successive rows gives better rational approximations to 1/Gamma(x+1). Using the Cauchy product, one can obtain approximations to Gamma(x+1) with this table. For instance, T(3, 2) = -numerator(A(3, 1) * T(3, 1) + A(3, 2) * T(3, 0)) = -numerator(17/36 * (-17/36) + (- 7/12) * 1) = 1045. Doing this for each row yields the full table
  1;
  1, 0;
  1, -1/4, 5/16;
  1, -17/36, 1045/1296, -35801/46656;
  1, -181/288, 104905/82944, -38432557/23887872, 15859708705/6879707136;
As an example, row 3 gives Gamma(x+1) ~ 1 - 17/36x + 1045/1296x^2 - 35801/46656x^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator@CoefficientList[Series[1/Sum[Sum[LaguerreL[i,1](-1)^i StirlingS1[i,k]/i!,{i,0,m}] x^k,{k,0,m}],{x,0,m}],x],{m,0,10}]

Formula

Let A(n, k) be the triangle of coefficients A386675(n, k)/A386676(n, k) (see example).
Then T(0, 0) = 1, and for n>=1, T(n, k) = -numerator(Sum_{j=1..k} A(n, j) * T(n, k-j)). This follows immediately from the Cauchy product applied to (1/f(x)) * f(x) = 1.
T(n, k) is also the k-th coefficient in the Taylor series of 1/(Sum_{j=0..n} A(n, j) * x^j).
Equivalently T(n, k) is the k-th coefficient in the polynomial division 1/(Sum_{j=0..n} A(n, j) * x^j).

A386679 Triangle of denominators for rational convergents to Taylor series of Gamma(x+1).

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 1, 36, 1296, 46656, 1, 288, 82944, 23887872, 6879707136, 1, 7200, 51840000, 373248000000, 2687385600000000, 19349176320000000000, 1, 5400, 58320000, 78732000000, 3401222400000000, 18366600960000000000, 198359290368000000000000, 1, 264600, 140026320000, 9262741068000000, 19607370292742400000000
Offset: 0

Author

David Ulgenes, Aug 09 2025

Keywords

Comments

T(n, k) is the denominator of the k-th coefficient in a degree n polynomial approximation to Gamma(x+1) with rational coefficients.
That is, Gamma(x+1) ~ Sum_{j=0..n} A386678(n, j) * x^j / A386679(n, j) which is exact as lim_{n->oo}.

Examples

			Let A(n, k) = A386675(n, k)/A386676(n, k) be the triangle
  1;
  1, 0;
  1, 1/4, -1/4;
  1, 17/36, -7/12, 1/9;
  1, 181/288, -167/192, 77/288, -5/192;
  1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
  1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
where each successive rows gives better rational approximations to 1/Gamma(x+1). Using the Cauchy product, one can obtain approximations to Gamma(x+1) with this table. For instance, T(3, 2) = -denominator(A(3, 1) * T(3, 1) + A(3, 2) * T(3, 0)) = -numerator(17/36 * (-17/36) + (- 7/12) * 1) = 1296. Doing this for each row yields the full table:
  1;
  1, 0;
  1, -1/4, 5/16;
  1, -17/36, 1045/1296, -35801/46656;
  1, -181/288, 104905/82944, -38432557/23887872, 15859708705/6879707136; ...
As an example, row 3 gives Gamma(x+1) ~ 1 - 17/36x + 1045/1296x^2 - 35801/46656x^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator@CoefficientList[Series[1/Sum[Sum[LaguerreL[i,1](-1)^i StirlingS1[i,k]/i!,{i,0,m}] x^k,{k,0,m}],{x,0,m}],x],{m,0,10}]

Formula

Let A(n, k) be the triangle of coefficients A386675(n, k)/A386676(n, k) (see example).
Then T(0, 0) = 1, and for n>=1, T(n, k) = -denominator(Sum_{j=1..k} A(n, j) * T(n, k-j)). This follows immediately from the Cauchy product applied to (1/f(x)) * f(x) = 1.
T(n, k) is also the denominator of the k-th coefficient in the Taylor series of 1/(Sum_{j=0..n} A(n, j) * x^j).
Equivalently, T(n, k) is the denominator of the k-th coefficient in the polynomial division 1/(Sum_{j=0..n} A(n, j) * x^j).

A385959 a(0) = 1; a(n) = a(n-1)*(b(n)+1)/(b(n)-1), where b(n) = A385958(n) is the largest prime p such that a(n) is an integer.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 14, 15, 16, 18, 19, 38, 57, 76, 114, 115, 120, 121, 132, 135, 136, 138, 139, 278, 279, 310, 312, 314, 471, 628, 942, 1099, 2198, 2199, 2932, 4398, 5131, 10262, 10995, 10996, 16494, 19243, 38486, 41235, 41236, 41358, 41471, 41838, 41841, 46490, 55788, 55789, 111578, 167367, 168554, 252831, 252832, 252864
Offset: 0

Author

Thomas Ordowski, Jul 13 2025

Keywords

Comments

a(0) = 1; a(n) is the smallest k such that (k + a(n-1))/(k - a(n-1)) is a prime (A385958).
Note that a(n-1)+1 <= a(n) <= 2*a(n-1).

Crossrefs

Cf. A385958.

Formula

a(n) = Product_{k=1..n} (b(k)+1)/(b(k)-1), where b(n) = A385958(n).
a(n) = (1+t(n))/(1-t(n)) with t(n) = tanh(Sum_{k=1..n} arctanh(1/b(k))).

Extensions

More terms from Morné Louw and Martin Fuller, Jul 15 2025