cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054143 Triangular array T given by T(n,k) = Sum_{0 <= j <= i-n+k, n-k <= i <= n} C(i,j) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 4, 7, 1, 5, 11, 15, 1, 6, 16, 26, 31, 1, 7, 22, 42, 57, 63, 1, 8, 29, 64, 99, 120, 127, 1, 9, 37, 93, 163, 219, 247, 255, 1, 10, 46, 130, 256, 382, 466, 502, 511, 1, 11, 56, 176, 386, 638, 848, 968, 1013, 1023, 1, 12, 67, 232, 562, 1024, 1486, 1816, 1981, 2036, 2047
Offset: 0

Views

Author

Clark Kimberling, Mar 18 2000

Keywords

Comments

Row sums given by A001787.
T(n, n) = -1 + 2^(n+1).
T(2*n, n) = 4^n.
T(2*n+1, n) = A000346(n).
T(2*n-1, n) = A032443(n).
A054143 is the fission of the polynomial sequence ((x+1)^n) by the polynomial sequence (q(n,x)) given by q(n,x) = x^n + x^(n-1) + ... + x + 1. See A193842 for the definition of fission. - Clark Kimberling, Aug 07 2011

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,  3;
  1,  4,  7;
  1,  5, 11, 15;
  1,  6, 16, 26, 31;
  1,  7, 22, 42, 57, 63;
		

Crossrefs

Diagonal sums give A005672. - Paul Barry, Feb 07 2003

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([n-k..n], i-> Sum([0..i-n+k], j-> Binomial(i,j) ))))); # G. C. Greubel, Aug 01 2019
  • Magma
    T:= func< n,k | (&+[ (&+[ Binomial(i,j): j in [0..i-n+k]]): i in [n-k..n]]) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Maple
    A054143_row := proc(n) add(add(binomial(n,n-i)*x^(k+1),i=0..k),k=0..n-1); coeffs(sort(%)) end; seq(print(A054143_row(n)),n=1..6); # Peter Luschny, Sep 29 2011
  • Mathematica
    (* First program *)
    z=10;
    p[n_,x_]:=(x+1)^n;
    q[0,x_]:=1;q[n_,x_]:=x*q[n-1,x]+1;
    p1[n_,k_]:=Coefficient[p[n,x],x^k];p1[n_,0]:=p[n,x]/.x->0;
    d[n_,x_]:=Sum[p1[n,k]*q[n-1-k,x],{k,0,n-1}]
    h[n_]:=CoefficientList[d[n,x],{x}]
    TableForm[Table[Reverse[h[n]],{n,0,z}]]
    Flatten[Table[Reverse[h[n]],{n,-1,z}]] (* A054143 *)
    TableForm[Table[h[n],{n,0,z}]]
    Flatten[Table[h[n],{n,-1,z}]] (* A104709 *)
    (* Second program *)
    Table[Sum[Binomial[i, j], {i, n-k, n}, {j,0,i-n+k}], {n,0,12}, {k,0,n}]// Flatten (* G. C. Greubel, Aug 01 2019 *)
  • PARI
    T(n,k) = sum(i=n-k,n, sum(j=0,i-n+k, binomial(i,j)));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    def T(n, k): return sum(sum( binomial(i,j) for j in (0..i-n+k)) for i in (n-k..n))
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n,k) = Sum_{0 <= j <= i-n+k, n-k <= i <= n} binomial(i,j).
T(n,k) = T(n-1,k) + 3*T(n-1,k-1) - 2*T(n-2,k-1) - 2*T(n-2,k-2), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 30 2013
From Petros Hadjicostas, Jun 05 2020: (Start)
Bivariate o.g.f.: Sum_{n,k >= 0} T(n,k)*x^n*y^k = 1/(1 - x - 3*x*y + 2*x^2*y + 2*x^2*y^2) = 1/((1 - 2*x*y)*(1 - x*(y+1))).
n-th row o.g.f.: ((1 + y)^(n+1) - (2*y)^(n+1))/(1 - y). (End)

Extensions

Name edited by Petros Hadjicostas, Jun 04 2020