A054146 a(n) = A054145(n)/2.
0, 1, 6, 29, 128, 536, 2168, 8556, 33152, 126640, 478304, 1789840, 6646272, 24519680, 89956224, 328437184, 1194102784, 4325299456, 15615510016, 56209986816, 201798074368, 722731821056, 2582790830080, 9211619462144
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-20,16,-4).
Programs
-
GAP
a:=[0,1,6,29];; for n in [5..30] do a[n]:=8*a[n-1]-20*a[n-2] +16*a[n-3]-4*a[n-4]; od; a; # G. C. Greubel, Aug 01 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^2/(1-4*x+2*x^2)^2 )); // G. C. Greubel, Aug 01 2019 -
Mathematica
LinearRecurrence[{8,-20,16,-4}, {0,1,6,29}, 30] (* G. C. Greubel, Aug 01 2019 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^2/(1-4*x+2*x^2)^2)) \\ G. C. Greubel, Aug 01 2019
-
Sage
(x*(1-x)^2/(1-4*x+2*x^2)^2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
Formula
From G. C. Greubel, Aug 01 2019: (Start)
a(n) = ((n-2)*((2 + sqrt(2))^n + (2 - sqrt(2))^n) + sqrt(2)*((2 + sqrt(2))^n - (2 - sqrt(2))^n))/16.
G.f.: x*(1 - x)^2/(1 - 4*x + 2*x^2)^2. (End)