cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054192 Binomial transform of A000029.

Original entry on oeis.org

1, 3, 8, 20, 49, 119, 289, 705, 1731, 4283, 10690, 26934, 68531, 176115, 457110, 1198128, 3170607, 8468277, 22818167, 61999531, 169778889, 468292663, 1300270333, 3632269293, 10202425207, 28798822159, 81652955889, 232429744843, 663969970203, 1902716831527
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2000

Keywords

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; ceil(add(
          phi(d)*2^(n/d)/(2*n), d=divisors(n))+
         `if`(n::odd, 2^((n-1)/2), 2^(n/2-1)+2^(n/2-2)))
        end:
    a:= n-> add(b(n-j)*binomial(n, j), j=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 17 2017
  • Mathematica
    a29[n_] := If[n == 0, 1, DivisorSum[n, EulerPhi[#]*2^(n/#)&]/(2*n) + If[OddQ[n], 2^((n-1)/2), 2^(n/2-1) + 2^(n/2-2)]]; a[n_] := Sum[Binomial[n, k] * a29[k], {k, 0, n}]; Array[a, 28, 0] (* Jean-François Alcover, Jul 17 2017 *)

Formula

a(n) ~ 3^(n+1) / (4*n). - Vaclav Kotesovec, Nov 02 2023